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Abstract

The Thesis introduces a novel algorithmic framework for weakly supervised learn-
ing, namely, for any any problem in between supervised and unsupervised learning,
from the labels standpoint. Weak supervision is the reality in many applications of
machine learning where training is performed with partially missing, aggregated-
level and/or noisy labels. The approach is grounded on the concept of statistical suf-
ficiency and its transposition to loss functions. Our solution is problem-agnostic yet
constructive as it boils down to a simple two-steps procedure. First, estimate a suffi-
cient statistic for the labels from weak supervision. Second, plug the estimate into a
(newly defined) linear-odd loss function and learn the model by any gradient-based
solver, with a simple adaptation. We apply the same approach to several challeng-
ing learning problems: (i) learning from label proportions, (ii) learning with noisy
labels for both linear classifiers and deep neural networks, and (iii) learning from
feature-wise distributed datasets where the entity matching function is unknown.
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Chapter 1

Introduction

1.1 Thesis summary

Supervised learning is by far the most effective application of the machine learning
paradigm. However, its success in modern real word challenges is undermined by
the fundamental assumption that we have perfect knowledge of the target variable,
the label, at training time. Despite the unprecedented pace of accumulation of digital
datasets, labeled data is still rare, due to several reasons: supervision is often generated
by costly human annotation; relevant information may be obfuscated by privacy
mechanisms; or, merely, labels are only known at a higher level of instance/temporal
granularity with the respect to the one required for training. In addition to those
issues, data collection is affected by ubiquitous noise corruption of various nature
and therefore supervision is never perfectly reliable. As a consequence, learning
is often performed with sparse, aggregated-level and/or noisy training labels. We
consider all those scenarios all under the name of weakly supervised learning.

In this Thesis, we approach this generic learning problem through the lens of
Statistics and Learning Theory. Our solution is problem-agnostic yet constructive
and it boils down to a simple two-steps procedure. First, estimate a sufficient statistic
of the unknown labels from weak supervision; this quantity is called mean operator.
Second, plug the estimate into a standard loss function and learn the model by any
gradient-based solver. The key to the second step is the definition of a family of
losses that we call linear-odd. Its elements can be computed without the need of
any label, given their sufficient statistic, by virtue of what we term loss factorization.
Several commonly used losses belong to the family, e.g. logistic and square. From
the theoretical viewpoint, linear-odd losses shed new light on generalization bounds
with Rademacher complexity: the contribution of the supervision is isolated into
one single term, which accounts for the deviation of the sufficient statistic from its
population mean. From the algorithmic viewpoint, we bypass the need of estimating
actual labels and therefore circumvent the difficult bi-convex optimization problem
arising from naïvely modeling labels as latent variables. To put this into practice,
a well-behaved estimator of the sufficient statistic remains to be defined. This is
achieved depending on the particular nature of the weak supervision and relative
assumptions.

We study in detail three scenarios of weak supervision. The first is called learning

1



2 Introduction

from label proportions, where nothing is known about the target variable but its pro-
portion over subsets of the training set, the bags. This setting is inspired by several
applications where individual labels are not available, but ratios and percents are
easy to estimate for domain experts, or given by other sources in terms of aggre-
gates, e.g. surveys, census data. Despite the poor label knowledge, it is possible to
learn linear classifiers with strong theoretical guarantees and good practical perfor-
mance. We work under a weak distinguish-ability assumption of bags, which relaxes
a similar but stricter condition in literature. In light of our two-step framework, the
problem is reduced to estimating the mean operator from the label proportions. We
do so by least square minimization with a manifold regularizer, which expresses our
geometrical assumption on the data. A finite sample guarantee is given: the estima-
tor is all the better as the maximum feature vectors norm increases. We name this
algorithm the Laplacian Mean Map (LMM): after estimation, a standard loss function
computed with the mean operator is minimized. The model output of LMM enjoys a
data dependent approximation bound with respect to an ideal classifier learned with
full supervision.

We then propose an iterative algorithm, the Alternating Mean Map (AMM). It
takes the solution of LMM as input and optimizes it further over the set of label-
ings consistent with the proportions, implementing coordinate descent minimization.
This simple idea can highly improve the quality of the final model in practice, yet it
does not suffer some of the drawbacks of the popular bi-convex iterative optimiza-
tion. In fact, the LMM initializer performs significantly better than random vectors
and is deterministic by definition. Moreover, computing the latent labels that match
with the proportions while minimizing the loss can be efficiently done via sorting.
Finally, we also formulate a specialized uniform convergence bound, involving a
generalization of Rademacher complexity for learning from label proportions. The
result includes a bag-wise surrogate risk for which we show that AMM optimizes
a tractable bound. We experiment on UCI domains with up to hundreds of thou-
sands of examples, comparing the algorithms to previous work. We simulate bags
and their label proportions and retain labels for test set performance. Results display
that AMM and LMM outperform the state of the art and sometimes even compete
with the fully supervised learner, while requiring few proportions only. Tests on the
largest domains display the scalability of both algorithms.

The second weakly supervised scenario is the case of asymmetric label noise. In the
binary classification setting that we considered, the noise model assumes that one
label is flipped into the other at random by class-dependent noise rates. The setting
is a well-studied approximation of real-world corruption of categorical labels, by the
effect of human mistakes in data annotation or automated data extraction. A known
recipe exists for correcting the loss by making it unbiased under asymmetric label
noise. Thanks to loss factorization, we can directly apply it to the mean operator. We
demonstrate that any algorithm minimizing a linear-odd loss computed with the un-
biased mean operator enjoys a generalization bound that tightens results from prior
work. We also characterize the whole family of linear-odd losses with an approxi-
mate robustness property: the difference in average risk (under the noise) between
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ideal model and ours cannot be arbitrarily large and the bound is data dependent by
the mean operator. On the algorithmic side, we show how to adapt stochastic gra-
dient descent and proximal algorithms to handle weak supervision. Once the mean
operator has been estimated, the modification only requires a change of inputs and
to sum up the mean operator to the model update. The theory is validated with ex-
periments on UCI domains, on which we inject artificial noise. We assume to know
the noise rates for the first step of estimation. Our approach of loss correction is
effective: we obtain a significant gain in performance with respect to standard loss
minimization with the same algorithm. Interestingly, in the presence of very high
noise (one noise rate close to 50%) we still obtain sensible models, while learning
with no loss correction often results in random guessing.

We study further the asymmetric label noise setting and consider multi-class clas-
sification with deep neural networks, including recurrent neural networks. Once
more, the only component we operate on is the loss function, thus our solution is ac-
tually independent from any chosen architecture. Although, with neural networks,
our two-step learning procedure requires more care. Here the sufficient statistic is
computed upon intermediate feature representations that need to be learned and
therefore cannot be estimated a priori. Still, even with multiple classes, what is suffi-
cient for loss correction is the probability of flipping each class into any other, namely
a transition matrix. Given the matrix, we propose two types of loss corrections; one
follows the extension of the above idea to multi-class, the other is instead inspired
by prior work on robust Deep Learning. Both corrections amounts at most to one
inversion and multiplication of the noise matrix. Therefore, we show how to com-
pute the noise rates from (noisy) data as the first step of learning. In particular, we
adapt a recently published technique for noise estimation to the multi-class scenario.
The whole learning process is summarized as follows: train the chosen neural net-
work with standard loss using corrupted labels; exploit it to estimate the transition
matrix; finally re-train the network with the corrected loss. Experiments on MNIST,
IMDB, CIFAR-10, CIFAR-100 and a large scale dataset of clothing images show that
a diversity of architectures — stacking dense, convolutional, pooling, dropout, batch
normalization, word embedding, LSTM and residual layers — demonstrate noise ro-
bustness for image recognition and sentiment analysis. Incidentally, we also prove
that, when ReLU is the only non-linearity, the loss curvature is immune to label
noise.

Finally, we explore an extension of the framework to the challenging problem of
learning from distributed datasets, where examples are “vertically” (feature-wise) parti-
tioned and the "who-is-who" correspondence is unknown. As a motivating example,
we may imagine two peer institutions, e.g. a bank and an insurance company, which
aim to exploit the joint predictive power of their data assets (expressed on different
feature spaces), based on the knowledge that they share many customers. Our goal
is to learn a classifier in the cross product space of the two domains, in the hard case
when no shared ID is available; companies may not know which partial views are
about the same customer in the two datasets or, more likely, matching is not permit-
ted by privacy regulation. We work under two assumptions: all labels are known
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and some of the features are shared between the two domains. This can be seen as
a peculiar setting of weakly supervised learning, since the mapping between each
feature vector and relative label (although known) is effectively missing.

Traditionally, the problem would be approached by first solving (approximate)
entity matching and subsequently learning the classifier in a standard manner. In-
stead, following the underlying philosophy of the Thesis, we bypass the problem of
estimating the unknown variables and look for sufficient statistics. In this setting,
we require a different sort of loss factorization, expressed by the recently introduced
concept of Rademacher observations (rados). Those statistics closely related to the
mean operator and indeed can be thought as sufficient for subsets of examples — not
just for labels — in the data. We replace the minimization of a loss over examples,
which requires entity resolution, by the equivalent minimization of a loss over rados.
In general, the number of rados is exponential in the sample size. We show that a
large subset of these rados does not require to perform entity matching and can be
easily obtained linking together partial views of examples with the same value of
shared features. With a focus on square loss, we prove that optimization on those
rados has time and space complexities smaller than the algorithm minimizing the
equivalent square loss on examples. Last, we relax the key assumption that the data
is vertically partitioned among peers — in this case, we would not even know the
existence of a solution to entity resolution. In this more general setting, experiments
support the possibility of beating the optimal peer in hindsight.

1.2 Organization and originality

Except Chapter 2 on the background, the content of the Thesis is original or excerpt
from novel results either published or submitted to academic conferences from my-
self and collaborators. In particular, Chapter 3 elaborates the theory of loss functions
discussed in Patrini et al. [2016a] including some formal results from Patrini et al.
[2014]; it can be thought as a toolbox of abstract results to be specialized for particular
instances of weak supervision. Chapter 4 deals with the special case of learning from
label proportions, that is the subject of Patrini et al. [2014]. Chapters 5 and 6 discuss
the case of learning with asymmetric noisy labels as in Patrini et al. [2016a] (theory,
linear and kernel models) and in Patrini et al. [2017] (neural networks, multi-class,
noise estimation). Chapter 7 extends the theory from Chapter 3 to the problem of
distributed learning. This is a revised presentation from the original work of Patrini
et al. [2016b]; it also requires some background material from Nock et al. [2015], that
we have co-authored. Results recalled from prior work are accompanied by the rel-
ative citations. Literature reviews and related work are topic-specific and presented
at the end of each Chapter, along with most of the proofs and additional formal and
experimental results.
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Chapter 2

Background

The Chapter recalls basic notions of supervised Machine Learning, Learning Theory
and Statistics, and presents a critical review of weakly supervised learning as tackled
by prior work. Notations, formal statements and proofs of this introductory material
are loosely inspired by the book of Shalev-Shwartz and Ben-David [2014].

2.1 Preliminary notation

We begin by defining some notation that will be used throughout the Thesis. R+ is
the set of non-negative real numbers. For any m ∈N, the sequence of positive natural
number up to m is [m]

.
= {1, . . . , m}. Boldfaces like v indicate (column) vectors; vi

(boldface) is the ith element of a sequence of vectors instead; vi may either be the ith
component of vector v or the ith element of a sequence of scalars {v1, v2, . . . }. 1 is
the vector of all ones, with size determined by context, and ei is the indicator vector,
that is 1 only at the ith position.

Capital letters like A can indicate matrices, or sometimes constants scalar, de-
pending on the context; Ai· and A·j are respectively row i ∈ [m] and column j ∈ [n]
of matrix A ∈ Rm×n. 0 is either a vector or a matrix filled with zeros, with size
determined by context. I is the identity matrix. diag(v) is diagonal matrix with v on
the diagonal. tr(A) is the trace of matrix A.

For any function f : R → R, we denote its first derivative at x by f ′(x); the
subdifferential set, that is, the set of all subdifferentials at point x is denoted by
∂ f (x). For vector functions f : Rd → R, we indicate gradient at point x by ∇ f (x).

We denote with 1{p} the indicator function of a predicate p, which is 1 when
true. [v]+ is max(0, v), for any scalar v. Inner products are written by angular
brackets 〈·, ·〉. Sets and sequences are italic capital letter like S . The probability of an
event is denoted by P(·). The expectation over a distribution D is denoted as ED [·];
the same notation is for empirical averages on a sample S as ES [·] .

= 1/|S|∑ · . We
also refer to the set Σm

.
= {−1, 1}m, the m-times Cartesian product of {−1, 1}.

7
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2.2 The supervised learning problem

In Supervised Machine Learning we learn a map between two spaces by looking at
examples. Learning Theory studies the role of those objects within the process of
learning. Let set X be the input space set Y the output space. Elements x ∈ X ⊆ Rd

are called feature vectors, observations or instances and elements y ∈ Y are called labels.
The function h : X → Y , named hypothesis or model, belongs to a hypothesis space
H. Any pair (x, y) ∈ X ×Y is an example.

It is usual to frame the problem of learning in the language of probability. We
assume that examples are drawn i.i.d from an unknown but fixed distribution D.
A (learning) sample S of size m is a finite sequence of examples {(xi, yi), i ∈ [m]}.
Notice that despite the commonly used “set-like” notation, S is actually a sequence,
which in particular implies that examples can be repeated. At the same time, since
examples are drawn i.i.d., their order does not strictly matter, except sometimes for
notational convenience in defining algorithms. In regression, the output space is the
real line, i.e. Y = R. In classification, the output space is instead discrete and labels
are also called classes. For instance in binary classification, a main focus of this work,
it is common to represent the output variable as taking values in {−1, 1}.

The goal of supervised learning is to find a hypothesis that generalizes well on
unseen examples. Thus we first ought to define what is the quality measure for
hypotheses. In classification, we refer to the generalization error, or risk, the average
number of labels correctly predicted by the model: ED 1{h(x) = y}. We could
therefore define a learner as any algorithm minimizing the generalization error as:

h? .
= argmin

h:X→Y
ED 1{h(x) 6= y} (2.1)

The minimizer of this problem is called Bayes optimal and its risk is the Bayes risk.
This formulation is problematic for several reasons. First, we have mentioned that the
distribution D is unknown to the learner. Learning can only make use of the sample
S , which provides an empirical version of the objective of Equation 2.1, namely the
empirical risk ES 1{h(x) 6= y}. Second, we need to define what the model space H
is. The choice of the model space is crucial for the success of learning, as discussed
below. For most of the Thesis we consider one of the simplest hypothesis space, i.e.
the set of linear classifiers. To make this explicit, we will denote the model by a vector
θ ∈ Rd as h(·) .

= 〈θ, ·〉. This often allows to simplify formal arguments while still
capturing essential properties. We introduce more complex model spaces in Chapter
6, that deals with deep neural networks, and Chapter 3, which briefly touches on
non-parametric kernel methods. Third, in practice it would be difficult to optimize
directly the error function, which is discontinuous and non-convex. Instead, it is
common to resort to surrogate objectives called loss functions.

A loss ` : X ×Y ×H → R measures the disagreement between labels and model
predictions, although not necessarily by strict inequality, e.g. logistic and square
losses (in formulae given below). By extension from the empirical risk, we call em-
pirical `-risk, or sometimes surrogate empirical risk, the average loss ES `(y, h(x)).
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We denote `-risks and empirical counterparts by RD,`(h) and RS ,`(h) respectively.
The error itself can be thought as the risk a certain loss function, the 0/1 loss,
`01 = 1{yh(x) < 0}. As a result, we now formulate the empirical risk minimization
(ERM) framework, a fundamental paradigm in Machine Learning:

argmin
h∈H

RS ,`(h) (2.2)

One final important issue is hidden in the ERM formulation, that of overfitting.
By searching for a model in the learning sample, we may end up learning all too well
particular variations of S , but with no guarantee that the model may generalize on
unseen examples of D. Intuitively, when the size of the learning sample is small
relatively to the model complexity, the model could memorize the whole sample
itself, and overfitting is a potential threat. When obtaining more data for learning
is not an option, overfitting can be combatted in several ways. We may replace the
hypothesis spaceHwith one containing model with smaller capacity; or equivalently,
we may express a “preference” over the elements ofH by balancing the empirical risk
with an additional term acting as a regularizer Ω : H → R+. We update the learning
framework of Equation 2.2 to the structural risk minimization to:

argmin
h∈H

RS ,`(h) + λ ·Ω(h) (2.3)

with λ > 0 balancing the two contributions. As we show below, Ω may also be a
function of on the learning sample, depending on the kind of prior knowledge one
needs to express in the problem.

2.3 Learning Theory

Loss functions have been studied extensively in the Machine Learning and Statistics
literature. It is common to assume some preconditions for defining losses that are
amenable of study: non-negativity and convexity are definitely the most widely re-
quired. In our work, we do not strictly work under those conditions but we will
make it explicit when particular results require them. Here we limit ourself to recall
some definitions and properties that are relevant for what is discussed in the Thesis.

One first important requirement for loss functions is properness.

Definition 1. A loss `(y, h(x)) is proper when:

argmin
h

Ey∼p(y|x) `(y, h(x)) = p(y|x) . (2.4)

This requirement states that the optimal model should be the conditional prob-
ability of the class, given the observation. This way, models fitted via proper losses
are actual probability estimators for the class.

We may define the domain of a loss function to be X × Y ×H. In practice, this
parameterization is seldom necessary. It is common to focus on a subset of loss
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Figure 2.1: Losses as function of x = yh(x). Logistic is scaled by 1/ log(2) to be an
upper bound of 01 loss, which is irrelevant for optimization.

functions called margin losses.

Definition 2. A margin loss is defined as `(yh(x)) .
= `(x, y, h).

When clear by the context, we simply use a generic scalar argument `(x). Margin
losses are implicitly symmetric since `(yh(x))) = `(−y · (−h(x))). Examples are 0/1
loss 1{x < 0}, square loss (1 − x)2, logistic loss log(1 + e−x) (logistic regression),
hinge loss [1− x]+ (SVM) and exponential loss e−x (boosting). Figure 2.1 shows how
these losses are all designed to be upper bounds of 0/1 loss, a sensible strategy for
optimizing the quantity that we ultimately wish to minimize. Among those margin
losses, it is well known that hinge loss is not proper and cannot naturally be used as
a class probability estimator [Platt, 1999].

Sometimes we will consider losses that are strongly convex functions, which is a
common assumption to facilitate the derivation of desired upper bounds.

Definition 3. Let γ > 0. A differentiable function f (x) is γ-strongly convex if for any
x, x′ ∈ Dom( f ) we have:

f (x)− f (x′) ≥ 〈∇ f (x′), x− x′〉+ γ

2

∥∥x− x′
∥∥2

2 . (2.5)

Similarly, it is common to refer to L-Lipschitz functions, that are such that | f (x)−
f (x′)| ≤ L‖x− x′‖ for any x, x′. A comprehensive discussion on loss functions for
binary classification is Reid and Williamson [2010].

2.3.1 Generalization bounds and Rademacher complexity

We recall standard results on uniform convergence of learning, taken from Bartlett
and Mendelson [2002]; Kakade et al. [2009]; Shalev-Shwartz and Ben-David [2014].
The aim is to provide generalization bounds for ERM. We ground the theory on the
concept of Rademacher complexity, a modern data dependent form of complexity of
the model space. Several formal results of the Thesis will extend what follows.
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Definition 4. Let σ be a random variable drawn i.i.d. from {±1} with uniform probability.
The empirical Rademacher complexity of a hypothesis space H with regard to sample S
of size m and loss ` is:

R(` ◦ H ◦ S) .
= Eσ∼Σm

[
1
m

sup
h∈H

m

∑
i=1

σi `(yih(xi))

]
, (2.6)

while its population version R(` ◦ H)
.
= ES∼D R(` ◦ H ◦ S) is the Rademacher com-

plexity.

We recall two types of bound that we will use in the Thesis. For the sake of com-
pleteness, we prove them in the Appendix of this Chapter; proofs rely heavily on the
application of McDiarmid’s inequality [McDiarmid, 1998].

Theorem 5. Assume a bounded loss, i.e. |`(x)| ≤ C, ∀x. Then for any δ ∈ (0, 1), with
probability at least 1− δ over the choice of S , simultaneously for all h ∈ H, we have:

RD,`(h)− RS ,`(h) ≤ 2R(` ◦ H) + C

√
2
m

log
1
δ

. (2.7)

Moreover, let the empirical risk minimizer be ĥ = argminh∈H RS ,`(h). For any δ ∈ (0, 1),
with probability least 1− δ over the choice of S , we have:

RD,`(ĥ)− inf
h∈H

RD,`(h) ≤ 4R(` ◦ H) + 2C

√
2
m

log
1
δ

. (2.8)

Proof in 2.6.1. This first inequality limits the difference between risk and its
empirical approximation; this probabilistic guarantee corroborates the idea of fitting
the model on a finite but not too small sample S . The second is a bound on the
excess `-risk, that is the difference between the risk of ERM model and the smallest
risk achievable for models in H, the second being unavoidable even for known D.
Those bounds have a typical shape often encountered in generalization results. Two
terms contribute to their significance. The Rademacher complexity quantifies the
capacity of the model space H of fitting all possible label assignments. While large
capacity means better approximation and therefore lower empirical risk, this is not
necessarily good for generalization risk on D. In fact, low Rademacher complexity
tightens the bounds. This is along the line of the classic results on the VC-dimension,
which is indeed an upper bound of the Rademacher complexity. The remaining term
is a statistical penalty due to requiring uniform convergence. The bound holds true
for any S , and in particular for samples not being much representative of D, that is,
drawn from areas with low probability mass on the support of D. This is the role of
δ in the probability inequality, while large m weights down the possibility of those
bad choices of S .

Overall the bounds decrease as O(1/
√

m). To see this, actually we need to com-
pute the Rademacher complexity for a specific H (see Theorem 7 below). Additional
conditions can guarantee a fast rate of convergence of O(1/m), which is also known to
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be the fastest rate achievable in learning [Vapnik, 1998]. Those improved guarantees
will not be discussed in the Thesis.

Next, we specialize some of the previous results for Lipschitz loss functions and
linear classifiers.

Lemma 6. Let ` be a L-Lipschitz function. Then: R(` ◦ H) ≤ LR(H), where:

R(H)
.
= ES∼DEσ∼Σm

[
1
m

sup
h∈H

m

∑
i=1

σi h(xi)

]
, (2.9)

The result is also helpful to clarify what the Rademacher complexity computes: it
measures the capacity of hypotheses in H by the supremum of correlation with ran-
dom noise — the random variable σ. We will refer to both R(H) and R(` ◦H) (with
dependency on `) as Rademacher complexity. Second, we can give generalization
bounds specialized for linear classifiers.

Theorem 7. Let X be a vector space such that X = {x : ‖x‖2 ≤ X < ∞}. Let H
be the space of bounded linear classifiers H = {θ : ‖θ‖2 ≤ H < ∞}. Assume a L-
Lipschitz, bounded loss |`(x)| ≤ C, ∀x. With probability at least 1− δ over the choice of S ,
simultaneously for all h ∈ H, we have:

RD,`(h)− RS ,`(h) ≤
2LXH√

m
+ C

√
2
m

log
1
δ

. (2.10)

Moreover, let the empirical risk minimizer be ĥ = argminh∈H RS ,`(h). For any δ ∈ (0, 1),
with probability least 1− δ over the choice of S , we have:

RD,`(ĥ)− inf
h∈H

RD,`(h) ≤
4LXH√

m
+ 2C

√
2
m

log
1
δ

. (2.11)

Proof in 2.6.2. Finally, we have mentioned that Rademacher complexity is a data
dependent measure. Although, previous results account for its population mean, not
the empirical complexity. Yet it is simple to show that the empirical Rademacher
complexity converges rapidly to its population mean by applying McDiarmid’s in-
equality.

Lemma 8. Assume a bounded loss, i.e. |`(x)| ≤ C, ∀x. Let δ > 0. We have with probability
1− δ:

|R(` ◦ H)−R(` ◦ H ◦ S)| ≤ C

√
2
m

log
2
δ

. (2.12)

It follows that we can express all the above generalization bounds in terms of
empirical Rademacher complexity at the price of worsening the statistical penalty.
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2.3.2 Calibrated losses

The generalization bounds above express uniform convergence guarantees of the
ERM with respect to the surrogate loss function chosen for learning. Ultimately,
we wish to obtain similar bounds for the error, which is the measure of goodness
of the hypothesis. To that objective, we define a subclass of margin losses called
calibrated [Bartlett et al., 2006], which transforms the previous results in bounds for
the generalization error. We introduce them by a sufficient and necessary condition
for the case of convex losses.

Definition 9. Let ` be a non-negative convex loss. ` is (classification) calibrated if and
only if ` is differentiable in 0 and `′(0) < 0.

Theorem 10. Let ` be calibrated. Then, there exists a convex, non-decreasing, invertible
function ψ` : [0, 1]→ R+, with ψ`(0) = 0, such that for any h ∈ H:

ψ`

(
RD,0/1(h)− inf

h
RD,0/1(h)

)
≤ RD,`(h)− inf

h
RD,`(h) . (2.13)

It follows that any time we can prove a bound for the excess `-risk, we immediately
translate it to the error via ψ−1

` . For connections between proper and calibrated losses
see Reid and Williamson [2010].

2.4 Maximum likelihood, exponential family and sufficient
statistics

So far we have seen learning within ERM. An alternative set up for learning prob-
lems is the notion of maximum likelihood estimation (MLE), a classic procedure for
fitting models in Statistics. We start by assuming that our model belongs to a certain
parametric probability distribution. Learning is then accomplished by fitting those
parameters to the data by maximizing its likelihood. In particular, we can learn a
binary classifier in the conditional (binary) exponential family parameterized by a
vector θ ∈ Rd:

pθ(y|x) = exp

(
〈θ, yx〉 − log ∑

y∈Y
exp〈θ, yx〉

)
(2.14)

Here, y is the only random variable. The two terms in the exponent are the log-
partition function, which normalizes the distribution such that it can sum to one,
and the inner product between parameters and the sufficient statistic yx. Under the
i.i.d. assumption, we can maximize the likelihood of the data being generated by the
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exponential family as:

argmax
θ

m

∏
i=1

exp

(
〈θ, yixi〉 − log ∑

y∈Y
exp〈θ, yxi〉

)
= (2.15)

argmax
θ

exp

(
m

∑
i=1
〈θ, yixi〉 −

m

∑
i=1

log ∑
y∈Y

exp〈θ, yxi〉
)

. (2.16)

By taking log and a negation, the objective of 2.16 becomes:

m

∑
i=1

log ∑
y∈Y

exp〈θ, yxi〉 −
m

∑
i=1
〈θ, yixi〉 (2.17)

=
m

∑
i=1

log ∑
y∈Y

exp〈θ, yxi〉 −
m

∑
i=1

log exp〈θ, yixi〉 (2.18)

=
m

∑
i=1

log
exp〈θ, xi〉+ exp〈θ,−xi〉

exp〈θ, yixi〉
(2.19)

=
m

∑
i=1

log (1 + exp (−2yi〈θ, xi〉)) . (2.20)

Step 2.20 is true since y ∈ {±1}. Finally, by re-parameterizing θ and normalizing,
we obtain logistic loss. These steps prove how the two approaches for learning, ERM
and MLE, are equivalent for conditional exponential family and logistic loss. Addi-
tionally, Equation 2.17 shows how the loss splits into a linear term aggregating the
labels sufficient statistics and another, label free term. We consider this equivalence
between conditional exponential family and logistic loss as common knowledge (in
spite of being unaware of any published material). One of the key theoretical contri-
bution of the Thesis is to demonstrate how this is not a coincidence: we will introduce
a broad new family of losses for which this decomposition is always valid.

2.4.1 Sufficient statistics

Why did we call the quantities yx and ∑i yixi sufficient statistics? A statistic is any
function g computed from a sample S . Intuitively, a statistic g(S) is sufficient (for
the parameter θ) when it aggregates all information of S , such that no better model
could be learned from S in place of g. We are mostly interested in sufficiency with
regard to y, thus we will only look into this case. In formulas, a statistic g is sufficient
for θ with respect to any random variable Y with outcome y if:

P(θ|y) = P(θ|g(y)), ∀y ∼ Y . (2.21)

We provide an equivalent definition that, although somewhat less intuitive, is useful
for conceiving some formal results in the Thesis.

Definition 11 (Sufficient statistic). Let Y a random variable. g(Y) is a sufficient statistic
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for θ with regard to Y when for each pair of outcomes y, y′ of Y we have:

P(θ|g(y))
P(θ|g(y′)) does not depend on y⇔ g(y) = g(y′) . (2.22)

An additional equivalent characterization for sufficient statistics is provided by
the classic Fisher-Neyman Theorem [Lehmann and Casella, 1998].

Theorem 12 (Fisher-Neyman). Let pθ(y) be the probability density function of y. Then g
is sufficient for θ if and only if two non-negative functions p(i) and p(ii) can be found such
that:

pθ(y) = p(i)θ (g(y)) · p(ii)(y) . (2.23)

In other words, the probability density factors in two functions, such that θ inter-
acts with the y only through g. This can be used to show that yx is indeed suffi-
cient for θ with regard to y in the case of the conditional exponential family (Equa-
tion 2.14). It holds that p(ii)(y|x) = 1, g(y|x) = yx and p(i)θ (·|x) = exp(〈θ, ·〉 −
log ∑y∈Y exp(〈θ, yx〉), since the value of y is not needed for computing p(i)θ .

2.5 Weakly supervised learning

This Section is halfway between an informal problem statement and a high level lit-
erature review for weakly supervised learning problems and relative frameworks for
solutions. “Weakly supervised learning” is a non-standard yet widely used termi-
nology to describe scenarios that sit somewhere in between of supervised and unsu-
pervised learning; other literature refers to, for instance, indirect [Raghunathan et al.,
2016] or distant supervision [Mintz et al., 2009; Surdeanu et al., 2012]. This class of
learning problems relaxes one fundamental assumption of supervised learning: the
learner does not have perfect labels, that is, there is no guarantee that each label is
fully observable and that each observed label is free from mistakes. This informal
definition is deliberately vague as it is meant to encompass a large diversity of learn-
ing settings. For example, labels may be missing as with semi-supervision [Chapelle
et al., 2006] and positive and unlabeled data [du Plessis et al., 2015], noisy [Natarajan
et al., 2013], aggregated as it happens in multiple instance learning [Dietterich et al.,
1997] and learning from label proportions [Kuck and de Freitas, 2005], or given in a
candidate set which include the only correct one, as in partial labels or superset label
learning [Cour et al., 2011; Liu and Dietterich, 2014]. We also stress the fact that all
these problems share the same objective of supervised learning, which is learning
a classifier — or occasionally a regressor —, in contrast with “fully unsupervised”
learning.

Those scenarios are rarely considered altogether; formal analysis and algorithmic
solutions are usually proposed ad-hoc. In contrast, one of the goal of the Thesis is
give an unified treatment. We will see how this level of abstraction is beneficial.
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Formally, we model a weakly supervised problem by a corruption process that
takes the original distribution D and produces a corrupted distribution D̃, from
which we get a corrupted sample S̃ :

D corrupt−−−→ D̃ sample−−−→ S̃ (2.24)

A fundamental assumption is that the marginal distribution of the features is un-
touched by corruption, that is, PD(x) = PD̃(x). This is all the formalism we need
but we give more concrete examples of S̃ for some particular cases.

Example. In semi-supervised learning, the learner sees two subsamples, one fully
labeled and the other unlabeled: S̃ = (SL,SU), with SL = {(xi, yi), i ∈ [mL]} and
SU = {xi, i ∈ [mU ]}. In positive and unlabeled learning, the scenario is similar but
the labeled examples are always positive SL = {(xi, 1), i ∈ [mL]}.

Example. When labels are noisy, it is usually assumed that the learner sees them all,
although without guarantees of their truthfulness. Hence, S̃ = {(xi, ỹi), i ∈ [m]},
where ỹ is drawn from some corrupted label distribution p(ỹ).

Example. It is less obvious how to formalize supervision given at aggregate level; a
possible choice is the following. Let us consider the original learning sample given
by two ordered sets, one containing observations and the other one the relative la-
bels: S = (SX,SY); observations are mapped to respective labels by indices. The
corrupted sample leaves features vectors untouched us usual, yet it partitions them
into n bags as SX =

⋃
j∈[n] Sj with ∀j, j′ Sj ∩ Sj′ = ∅. A certain type of supervision

is defined at the level of bags by π ∈ Rn. The resulting corrupted sample is then
S̃ = ({Sj}j∈[n], {πj}j∈[n]). In learning from label proportions, πj ∈ [0, 1] represents
the fraction of positive labels for each bag j. In multiple instance labels, the supervi-
sion is even weaker and πj ∈ {0, 1} is 1 if at least one label in bag j is positive1.

The difference between those learning settings is not crisp, for two reasons. On
one hand, it is plausible that they can be combined by mixing the types of corruption.
For instance, we can easily imagine that some labels are missing but those known are
noisy; another common scenario is semi-supervised learning with additional prior
knowledge on large unlabeled data, e.g. as in Bilenko et al. [2004]. On the other
hand, some learning settings can be thought to be more general than others, without
a total ordering in a hierarchy. For instance, the noisy label distribution p(ỹ) may be
modeling the event of “label suppression” so as to encompass missing labels as well
[Menon et al., 2015]; multiple instance learning can be thought as a particular, less
informative supervision with respecting to label proportions [Kuck and de Freitas,
2005]; at the same time, algorithms for semi-supervised learning have been shown to
be apt for multiple instance learning [Zhou and Xu, 2007].

1Other encodings of supervision of MIL have been formalized. Also, MIL is sometimes intended as
the problem of learning classifiers at bag level; we do not consider this scenario. See Foulds and Frank
[2010]; Hernandez-Gonzalez et al. [2016] for more details.
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2.5.1 Empirical risk minimization under weak supervision

What is the meaning of computing the empirical risk on the corrupted sample,
RS̃ ,`(h)? By relaxing the assumption of “full supervision” the framework of ERM
loses its sense. Depending on the nature of weak supervision, this quantity may
be computable either only partially (semi-supervision) or completely but with lit-
tle meaning (noisy labels); worse, when supervision is given at multi-instance level,
there exists no obvious way to estimate the risk. Mathematically, the problem of
searching for risk minimizer becomes ill-posed. We discuss a non-exhaustive overview
of families of methods proposed in the past.

Case (i): some observations have individual labels, but some others do not. We
adopt the definition of S̃ = SL ∪ SU of semi-supervised learning for simplicity. We
can formulate an optimization problem such as:

argmin
h∈H

RSL,`(h) + λ · reg(S̃ , h) (2.25)

The regularizer is intended to exploit the information of the additional unlabeled
features vectors to bias the search in the model space. The idea is that the feature
geometry, regardless of unknown labels, should be informative about the class dis-
tribution. Formally, one of three celebrated assumptions is required for this to be
true: the smoothness, the cluster, or the manifold assumption [Chapelle et al., 2006];
the causal direction of data generation has also been taken into account for justify-
ing the success of semi-supervised learning [Janzing et al., 2012]. Examples of this
framework for learning with missing labels are: transductive SVM [Joachims, 1999],
information regularization [Szummer and Jaakkola, 2002], label propagation as a
regularizer [Zhu and Ghahramani, 2002; Bengio et al., 2006], entropy regularization
[Grandvalet and Bengio, 2004], manifold regularization [Belkin et al., 2006], ladder
network [Rasmus et al., 2015] and graph embedding [Weston et al., 2012; Yang et al.,
2016].

Case (ii): noisy labels. Design a corrected loss ˜̀ satisfying a certain property of
robustness with respect to the noise and minimize it instead of the original `:

argmin
h∈H

RS̃ , ˜̀(h) (2.26)

Often, the robust loss is either non-convex [Masnadi-Shirazi et al., 2010; Ding and
Vishwanathan, 2010; Ghosh et al., 2015] or requires certain knowledge of the label
corruption p(ỹ|y) [Stempfel and Ralaivola, 2009; Natarajan et al., 2013], with the no-
ticeable exception of the linear “unhinged” loss [van Rooyen et al., 2015].

Case (iii): aggregate supervision. An alternative to ERM in this case is non trivial,
as demonstrated by the many present in literature. An intuitive approach in the event
of lack of observation-level labels is to augment the search space to Y , namely, by
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modeling the unknown labels as latent variables. Although ultimately the learner
output is a model, the estimation of the labels become a fundamental intermediate
step for learning. This framework closely resembles and it is often implemented as
the Expectation Maximization (EM) algorithm, sharing the well known drawbacks.
Weak supervision helps the search in the model space by formulating constraints
(hard of soft) to be satisfied by the model:

argmin
h∈H,y∈Y

R(SX ,SY),`(h) + λ · constr(SX,SY, h) (2.27)

Examples of this approach are Yu et al. [2013] for LLP, Andrews et al. [2002] for MIL.
This framework easily extends to the case of constraints on (functions of) features
vectors, which may be loosely interpreted as weak supervision as well. In this line
of work, particularly relevant for applications in NPL, constraints are enforced on
particular features, such as the word “amazing” is a strong indicator of a highly
rated movie review; a sample of those methods are constraint driven learning Chang
et al. [2007], generalized expectation constraints Mann and McCallum [2008], poste-
rior constraints Ganchev et al. [2010], and label regularization [Mann and McCallum,
2010; Ardehaly and Culotta, 2015]. A unifying framework of this kind of EM-based
inference with constraints is elaborated by Samdani et al. [2012].

Case (iv): Prior work also attempts an agnostic treatment of weak supervision for
ERM, as we envision in the Thesis. A broad, comparative formalization of weakly su-
pervised problems is presented by Garcıa-Garcıa and Williamson [2011]. Joulin and
Bach [2012] attack a version of the generic Problem 2.27 by a convex relaxation and
a dedicated optimization algorithm based on semidefinite programming. Li et al.
[2013] formulate a tighter and more scalable convex relaxation of a generic weakly
supervised max-margin problem. Zantedeschi et al. [2016] propose the β-risk, a sur-
rogate risk augmented with a matrix parameter β which captures the reliability of
each instance label; models, labels and β are estimated iteratively. A last important
mention is the work of Raghunathan et al. [2016] that, due to the strong similarity
with our framework, will be discussed in detail in Section 3.7 of the next Chapter.

Several other ideas are popular in literature. These are for instance self-training
and co-training [Blum and Mitchell, 1998; Nigam and Ghani, 2000], multi-view learn-
ing [de Sa, 2005] and graph cuts [Blum and Chawla, 2001] for semi-supervised learn-
ing, the framework of collective graphical models [Sheldon and Dietterich, 2011;
Bernstein and Sheldon, 2016] and, more generally, any Bayesian treatment for in-
corporating weak supervision into a generative model [Seeger, 2000; Lawrence and
Jordan, 2004; Kuck and de Freitas, 2005; Liang et al., 2009; Kingma et al., 2014]. We
do not discuss those topics as they do not directly implement a solution for ERM –
although some can be shown to link to it. Moreover, readers who are expert in those
areas might foresee a conceptual link to multi-armed bandit [Auer et al., 2002] or
Reinforcement Learning [Sutton and Barto, 1998]. Admittedly, the need to model the
learning process in those settings is the result of the mismatch between observation
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(or action) and label (reward). As we do not study in any case neither sequential data
nor interactive scenarios, or in other words, we always assume i.i.d. samples, those
learning setting are as well outside the scope of the Thesis.

2.6 Appendix: proofs

2.6.1 Proof of Theorem 5

The proof follows Shalev-Shwartz and Ben-David [2014]. Let us first recall McDi-
armid’s inequality [McDiarmid, 1998].

Lemma 13. Let Z be a set and f : Zm → R be a function of m variables such that for some
c > 0, for all i′ ∈ [m] and for all z1, . . . , zm, zi′ ∈ Z we have:

| f (z1, . . . , zi, . . . , zm)− f (z1, . . . , zi′ , . . . , zm)| ≤ c . (2.28)

Let now be Z1, . . . , Zm m independent random variables taking values in Z . Then, with
probability at least 1− δ we have:

f (Z1, . . . , Zm)−E[ f (Z1, . . . , Zm)] ≤ c

√
m
2

log
1
δ

. (2.29)

We also make use of an additional Lemma that connects Rademacher complexity
with the maximum deviation of empirical risk from the respective risk.

Lemma 14. Let φ(S) = suph∈H RD,`(h)− RS ,`(h). Then:

ED φ(S) ≤ 2R(` ◦ H) . (2.30)

For any bounded loss function |`(c)| ≤ C, the function φ satisfies McDiarmid’s in-
equality with c = 2C/m. Therefore:

φ(S) ≤ ED φ(S) + C

√
2
m

log
1
δ
≤ 2R(` ◦ H) + C

√
2
m

log
1
δ

, (2.31)

with probability at least 1− δ. Clearly, for all h ∈ H, RD,`(h)−RS ,`(h) ≤ φ(S), which
proves the first statement. For the second statement, for any h? ∈ H, we write:

RD,`(ĥ)− RD,`(h?) = RD,`(ĥ) +
(
−RS ,`(ĥ) + RS ,`(ĥ)

)

+
(
− RS ,`(h?) + RS ,`(h?)

)
− RD,`(h?) (2.32)

≤
(

RD,`(ĥ)− RS ,`(ĥ)
)
+
(

RS ,`(h?)− RD,`(h?)
)

(2.33)

≤ 2φ(S) (2.34)

Step 2.33 holds because ĥ is the empirical risk minimizer. Finally, we apply again
inequality 2.31 and obtain the desired statement.
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2.6.2 Proof of Theorem 7

We need to compute an upper bound of the Rademacher complexity for linear clas-
sifiers.

Lemma 15. Let X be a vector space such that X = {x : ‖x‖2 ≤ X < ∞}. Let H be the
space of bounded linear classifiers H = {θ : ‖θ‖2 ≤ H < ∞}. Then:

R(H) ≤ XH√
m

. (2.35)

Proof

m R(H) = m ED,σ sup
θ∈H

1
m

m

∑
i=1

σi〈θ, xi〉 (2.36)

= ED,σ sup
θ∈H

m

∑
i=1

σi〈θ, xi〉 (2.37)

= ED,σ sup
θ:‖θ‖2≤B

m

∑
i=1

σi〈θ, xi〉 (2.38)

= ED,σ sup
θ:‖θ‖2≤B

〈θ,
m

∑
i=1

σixi〉 (2.39)

≤ H ED,σ

[∥∥∥∥∥
m

∑
i=1

σixi

∥∥∥∥∥
2

]
. (2.40)

The last Step is due to Cauchy-Schwartz inequality. Next, by Jensen’s inequality it
holds:

Eσ

[∥∥∥∥∥
m

∑
i=1

σixi

∥∥∥∥∥
2

]
= Eσ






∥∥∥∥∥

m

∑
i=1

σixi

∥∥∥∥∥

2

2




1/2

 ≤


Eσ



∥∥∥∥∥

m

∑
i=1

σixi

∥∥∥∥∥

2

2






1/2

. (2.41)

Finally, since the variables σi are independent, we have:

Eσ



∥∥∥∥∥

m

∑
i=1

σixi

∥∥∥∥∥

2

2


 = Eσ

[
∑
i,j

σiσj〈xi, xj〉
]

(2.42)

= ∑
i 6=j
〈xi, xj〉Eσ

[
σiσj

]
+

m

∑
i=1
〈xi, xi〉Eσ

[
σ2

i
]

(2.43)

=
m

∑
i=1
‖xi‖2

2 (2.44)

≤ mX2 . (2.45)
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Altogether we have:

m R(H) ≤ HED
(
mX2)1/2

=
√

mXH , (2.46)

which proves the Lemma.

To get Theorem 7, we combine the Theorem 5 and Lemma 6 with the last result.
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Chapter 3

Weakly supervised learning and
loss factorization

We introduce a new family of loss functions called linear-odd for the formal study
of weak supervision. The central result is the statement of the Loss Factorization
Theorem that isolates the effect of supervision into a label sufficient statistic. As
a result to this finding, we can formulate a generic two-step approach for solving
weakly supervised problem, by calling standard supervised algorithms based on
gradient descent. This Chapter is the most abstract and can be thought as a toolbox
of formal results and meta-algorithms to be specialized for particular instances of
weak supervision. The Chapter, if not the Thesis in a whole, is inspired by the
popular quote:

“One should solve the problem directly and never solve a more general problem
as an intermediate step” [Vapnik, 1998].

3.1 Linear-odd losses and Loss Factorization

In Chapter 2 we shown that MLE of the exponential family is equivalent to ERM with
logistic loss. In doing so, we proven that logistic loss decomposes into two terms,
one of which is linear. We now give a name to that statistical object and show some
intriguing properties connecting the idea of sufficiency from Statistics to Learning
Theory.

Definition 16. The (empirical) mean operator of a learning sample S is µS
.
= ES [yx] .

In the following, we drop the dependency of S when clear by the context. The
name mean operator, or mean map, is borrowed from the theory of Hilbert space
embedding [Quadrianto et al., 2009]. In this Thesis, µ will play the role of sufficient
statistic for labels with regard to a set of losses. The next is motivated by Definition
11 by taking log-odd ratio.

23
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Definition 17. A function T(S) is said to be a sufficient statistic for a variable y with regard
to a set of losses L and a hypothesis space H when for any ` ∈ L, any h ∈ H and any two
samples S and S ′ the empirical `-risk is such that1:

RS ,`(h)− RS ′,`(h) does not depend on y⇔ T(S) = T(S ′) . (3.1)

We will often call any such quantity a label sufficient statistic. We now state and
prove one of the main theoretical contributions of the Thesis, the Loss Factoriza-
tion Theorem – by reminiscence of Fisher-Neyman Factorization Theorem 12. As a
consequence, we establish sufficiency of mean operators for a large set of losses.

Theorem 18 (Factorization). Let H be the space of linear hypotheses. Assume that a loss
` is such that `o(x) .

= (`(x)− `(−x))/2 is linear. Then, for any sample S and hypothesis
h ∈ H the empirical `-risk can be written as:

RS ,`(h) =
1
2

RS2x ,`(h) + `o(h(µ)) , (3.2)

where S2x
.
= {(xi, σ), i ∈ [m], ∀σ ∈ Y}.

Proof We detail the proof as it clearly highlights the relevant elements allowing
losses to factor. A key ingredient is an elementary fact from calculus: any function
writes (uniquely) as the sum of an even and an odd function. Therefore, we can write a
loss function `(x) as:

`(x) =
1
2
[`(x) + `(−x) + `(x)− `(−x)] (3.3)

= `e(x) + `o(x) , (3.4)

where `e(x) .
= 1

2 [`(x) + `(−x)] and `o(x) .
= 1

2 [`(x)− `(−x)] are respectively an even
and an odd function (see also Figure 3.1). The empirical risk is:

RS ,`(h) = ES [`(yh(x))] (3.5)

=
1
2

ES
[
`(yh(x)) + `(−yh(x)) + `(yh(x))− `(−yh(x))

]
(3.6)

=
1
2

ES
[
∑σ∈Y `(σh(x))

]
+ ES

[
`o(yh(x))

]
(3.7)

=
1
2

ES2x

[
`(σh(x))

]
+ ES

[
`o(h(yx))

]
. (3.8)

Step 3.8 is due to the definition of S2x and linearity of h. Finally, exploiting the
properties of the loss assumed by the Theorem and the linearity of expectation, we

1Notice that the focus in the Definition is on the variable y (confront with Definition 11). This is
convenient so as to stress that sufficiency is about a certain variable, usually the label, while h will
rarely play a role in the Definition. Yet, the model h is the object that sufficiency is relevant for, since it
is the goal of learning.
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have:

ES
[
`o(h(yx))

]
= `o(h(µ)) , (3.9)

which concludes the proof.

Factorization splits `-risk in two parts. A first term is the `-risk computed on the
same loss on the “doubled sample” S2x that contains each observation twice, labeled
with opposite signs, hence it does not require any label knowledge. A second term is
a function `o of h applied to the mean operator µ, which aggregates all sample labels.
Also observe that `o is by construction an odd function, i.e. symmetric with respect
to the origin. We call the losses satisfying the Theorem linear-odd.

Definition 19 (Linear-odd loss). A loss ` is a-linear-odd (a-lol) when, for any a ∈ R:

`o(x) = (`(x)− `(−x))/2 = ax . (3.10)

Notice how this does not exclude losses that are non-smooth, non-convex, or non-
proper. From now on, in this Chapter we consider H as the space linear hypotheses
h(·) = 〈θ, ·〉. As a consequence of Theorem 18, µ is sufficient for all labels.

Corollary 20. The mean operator µ is a sufficient statistic for the label y with regard to lols
and the space of linear classifiers H.

Proof in 3.5.1. The practical consequence of this Corollary is at the core of the
applications in the Thesis: the single vector µ ∈ Rd summarizes all information
concerning the linear relationship between y and x for losses that are lol. But be-
fore dealing with the theoretical and practical consequences, we discuss the natural
question at this point: how restrictive is the linear-odd condition?

3.1.1 The extent of linear-odd losses

Many commonly used losses are linear-odd. We list several examples in Table 3.1
and discuss some in the following.
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loss even function `e odd function lo

generic `(x) 1
2 (`(x) + `(−x)) 1

2 (`(x)− `(−x))
lol `(x) 1

2 (`(x) + `(−x)) ax
ρ-loss ρ|x| − ρx + 1 ρ|x|+ 1 −ρx (ρ ≥ 0)
unhinged 1− x 1 −x
perceptron max(0,−x) x sign(x) −x
double-hinge max(−x, 1/2 max(0, 1− x)) † −x
spl al + l?(−x)/bl al +

1
2bl

(l?(x) + l?(−x)) −x/(2bl)

logistic log(1 + e−x) 1
2 log(2 + ex + e−x) −x/2

square (1− x)2 1 + x2 −2x
Matsushita

√
1 + x2 − x

√
1 + x2 −x

Table 3.1: Factorization of losses. † for reason of space, the even part of double-hinge
is written here as: max(−x, 1/2 max(0, 1− x)) + max(x, 1/2 max(0, 1 + x)).

Example. For logistic loss it holds that (Figure 3.1a):

`o(x) =
1
2

log
1 + e−x

1 + ex (3.11)

=
1
2

log
e−

x
2 (e

x
2 + e−

x
2 )

e
x
2 (e−

x
2 + e

x
2 )

(3.12)

= − x
2

. (3.13)

Example. Unhinged loss `(x) = 1− x of van Rooyen et al. [2015], which is trivially
linear-odd. Instead, the standard hinge loss `(x) = [1 − x]+ does not factor in a
linear term.

Example. Double-hinge and perceptron losses are proven to be linear-odd in du Plessis
et al. [2015]. See also Appendix 3.6.5.

Example. The class of symmetric proper losses (spls) [Nock and Nielsen, 2009], e.g.
logistic, square and Matsushita losses, satisfies the linear-odd condition. Let φ be
permissible generator, i.e. φ is strictly convex, differentiable and symmetric with
respect to 1/2 and with dom(φ) ⊇ [0, 1]. spls are defined as `(x) = aφ + φ?(−x)/bφ,
where φ? is the convex conjugate of φ. Then, since φ?(−x) = φ?(x)− x, we have:

`o(x) =
1
2

(
aφ +

φ?(−x)
bφ

− aφ −
φ?(x)

bφ

)
(3.14)

=
1

2bφ
(φ?(x)− x− φ?(x)) (3.15)

= − x
2bφ

. (3.16)

For a broader treatment of spl, see Subsection 4.2.1 on the next Chapter.
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One may question whether spl and lol are equivalent. Table 3.1 gives an answer
in the negative already: there are examples of non-smooth functions that are lol. The
next result provides a more complete picture by giving an exhaustive characterization
of the family of linear-odd losses.

Lemma 21. The exhaustive class of linear-odd losses is in 1-to-1 mapping with a proper
subclass of even functions, i.e. `(x) = `e(x) + ax, with `e any even function.

Proof in 3.5.2. Interestingly, the proposition also let us engineer losses that always
factor: choose any even function `e with desired properties — it need not be convex
nor smooth. The loss is then `(x) = `e(x) + ax, with a to be chosen. For example, let
`e(x) = ρ|x|+ 1, with ρ > 0. `(x) = `e(x)− ρx is a lol; furthermore, ` upper bounds
01 loss and intercepts it in `(0) = 1. Non-convex ` can be constructed similarly. Yet,
not all non-differentiable losses can be crafted this way since they are not lol.

From the optimization viewpoint, we may want to keep properties of ` after fac-
torization. The good news is that we are dealing with the same ` plus a linear term.
Thus, if the property of interest is closed under summation with linear functions,
then it will hold true. An example is convexity: if ` is lol and convex, so is the
factored loss. The same is true for differentiability.

In Appendix 3.6, we also elaborate on the relevance of the mean operator relating
it to the covariance between x and y (Subsection 3.6.1), discuss the generality of
Factorization beyond lols and linear models (Subsection 3.6.2) and state sufficient
and necessary conditions to bound other known losses, e.g. hinge and Huber, by
lols (Subsection 3.6.3).

3.2 Generalization bounds

A consequence of working with lols is on generalization bounds. We first derive an
improved upper bound to the Rademacher complexity of H computed on S2x.

Lemma 22. Suppose m even. Suppose X = {x : ‖x‖2 ≤ X} be the observations space, and
H = {θ : ‖θ‖2 ≤ H} be the space of linear hypotheses. Let Σ2m .

= ×j∈[2m]Y . Then the
empirical Rademacher complexity:

R(H ◦ S2x)
.
= Eσ∼Σ2

[
sup
θ∈H

1
2m ∑

i∈[2m]

σi〈θ, xi〉
]

(3.17)

of H on S2x satisfies:

R(H ◦ S2x) ≤ v · XH√
2m

, (3.18)

with v .
= 1

2 +
1
2

√
1
2 − 1

m .

Proof in 3.5.3. Notice that this holds for the Rademacher complexity as well, since
sampling different learning samples from D does not change the bound. A vanilla
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calculation of the complexity of a double sized sample by Lemma 15 would give a
coefficient of XH/

√
2m. Here we multiply it by v < (

√
2 + 1)/(2

√
2) ≈ 0.85. This is

relevant when combined into the next Theorem. The result sheds new light on excess
`-risk bounds on Rademacher complexity with linear hypotheses.

Theorem 23. Assume ` is a-lol and L-Lipschitz. Suppose Rd ⊇ X = {x : ‖x‖2 ≤
X < ∞} and H = {θ : ‖θ‖2 ≤ H < ∞}. Let c(X, H)

.
= maxy∈Y `(yXH) and θ̂

.
=

argminθ∈H RS ,`(θ). Then for any δ > 0, with probability at least 1− δ:

RD,`(θ̂)− RD,`(θ
?) ≤

√
2 + 1
2

· XHL√
m

+

c(X, H) ·
√

1
m

log
(

1
δ

)
+ 2|a|H · ‖µD − µS‖2 , (3.19)

or more explicitly:

RD,`(θ̂)− RD,`(θ
?) ≤

√
2 + 1
2

· XHL√
m

+

c(X, H) ·
√

1
m

log
(

2
δ

)
+ 2|a|XH ·

√
d
m

log
(

2d
δ

)
. (3.20)

Proof in 3.5.4. The former expression displays the contribution of the non-linear
part of the loss, keeping aside what is missing: a deviation of the empirical mean
operator from its population mean. When µ is not known because of partial label
knowledge, the choice of any estimator would affect the bound only through that
norm discrepancy. The second expression highlights the interplay of the two loss
components. c(X, H) is the only non-linear term, which may well be predominant in
the bound for fast-growing losses, e.g. strongly convex. Moreover, we confirm that
the linear-odd part does not change the complexity and only affects the statistical
penalty by a linear factor, with a dependency on d. We remark that we could as
well obtain a bound in the shape of the first statement of Theorem 5; we opt for an
excess-risk bound to compare easily with prior work in Chapter 5.

Linear-odd losses are also calibrated under mild conditions.

Lemma 24. Every a-linear-odd loss that is non-negative, convex, differentiable in 0 and with
a < 0 is calibrated.

Proof in 3.5.5. Consider again Table 3.1. Those losses are all convex and all have
a < 0. They are also differentiable in 0 with the exception of ρ-loss and “perceptron”.
This simple proof can be extended and used for unhinged loss, if we assume bounded
models [van Rooyen et al., 2015]. As a consequence of Theorem 10 we know that
the previous generalization bound for the `-risk translates into a guarantee for the
generalization error.
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Meta-Algorithm 1: Weakly supervised classification via statistical sufficiency —
the two-step procedure

Input: S̃ , ` is a-lol, H, λ > 0

(i) µ̂← estimate from (S̃ ,H)

(ii) θ̂← argmin
θ∈H

1
2m

m

∑
i=1

∑
σ∈Y

`(σ〈θ, xi〉) + a〈θ, µ̂〉+ λΩ(θ)

Output: θ̂

3.3 A two-step procedure for weakly supervised algorithms

Recall that in weakly supervised scenarios we learn on S̃ with partially observable
labels, but aim to generalize to D. Let us assume to know an algorithm A that learns
by ERM of a linear-odd loss ` over a sample S from the non-corrupted distribution
D. Can we use algorithm A as is for learning from S̃? By sufficiency, Corollary 20
leads to a principled two-step approach:

i estimate µ̂ from S̃

ii run algorithm A with ` computed with the estimated µ̂

Meta Algorithm 1 formalizes this two-step procedure. The framework is as ab-
stract as possible. Step (ii) is the same for every possible weakly supervised scenario,
while to implement Step (i) we need to know the particular type of supervision we
are dealing with. In other words, any weakly supervised classification problem can
be cast into the convex optimization problem of Step (ii), once the label sufficient
statistic — or its estimator — is available. This direction has been explored by the
work on learning from label proportions of Quadrianto et al. [2009, with logistic
loss] and Patrini et al. [2014, symmetric proper losses], and in the setting of noisy
labels by Gao et al. [2016, logistic loss]. The approach contrasts with ad-hoc optimiza-
tion methods often aiming to recover the latent labels by coordinate descent and EM
(see Chapter 2). Instead, the only difficulty here is to come up with a well-behaved
estimator of µ — a statistic independent from both model h and loss `.

Meta Algorithm 1 comes with the generalization guarantees elaborated in this
Chapter. Theorem 23 bounds in probability the `-excess risk and, with Lemma 24,
the true risk. It is more difficult to derive finite-sample formal results on the output
of Meta Algorithm 1, unless we work under additional assumptions. One such result
is given in Altun and Smola [2006]. We reformulate it for the whole class of convex
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and differentiable linear-odd losses. The Lemma gives an answer to the interesting
question of how much model θ̂ may diverge from the one that would be computed
from empirical mean operator µ = ES [yx].

Lemma 25. Let ` be a-lol convex and differentiable and let λ > 0. Call θ̂ and θ? the
minimizer of (ii) in Meta Algorithm 1 when, respectively, the empirical risk is computed with
µ̂ from the estimator of (i) and µ. Then

∥∥θ̂− θ?
∥∥

2 ≤
|a|
λ

∥∥µ̂− µ
∥∥

2 . (3.21)

This Lemma transfers the quality of the sufficient statistic estimation to the qual-
ity of the final model. Therefore, by using convex and differentiable linear-odd losses,
any well-behaved mean operator estimator would be enough for obtaining reliable
loss minimizers. A tighter result than the previous Lemma is the following, a data
dependent approximation bound. It requires twice differentiability and strong con-
vexity.

Let us first define some useful quantities. Let fk ∈ Rm denote the vector encoding
the kth variable in S : fki = xik. For any k ∈ [d], let:

f k
.
=

(
d

∑k ‖ fk‖2
2

) d−1
2d

fk (3.22)

denote a normalization of vectors fk in the sense that:

1
d ∑

k

∥∥∥ f k

∥∥∥
2

2
=

1
d

(
d

∑k ‖ fk‖2
2

)1− 1
d

∑
k
‖ fk‖2

2 (3.23)

=

(
1
d ∑

k
‖ fk‖2

2

) 1
d

. (3.24)

Let F collect all vectors f k in column and let F collect all vectors fk in column. With-
out loss of generality, we assume F>F � 0, i.e. F>F positive definite (i.e. no feature
is a linear combination of the others), implying that F>F � 0 as well, because the
columns of F are just positive rescaling of the columns of V.

Theorem 26. Hold the same conditions of Lemma 25 and additionally assume that ` is twice
differentiable and γ-strongly convex with γ > 0. Let m be the learning sample size. Then the
following holds:

∥∥θ? − θ̂
∥∥

2 ≤
|a|

λ + 1
em γ vol2(F)

‖µ− µ̂‖2 , (3.25)

where vol(F) .
=

√
det F>F denote the volume of the (row/column) system of F.

Proof in 3.5.6. To see how large the denominator in 3.25 can be, consider the
simple case where all eigenvalues of F>F, λk(F>F) ∈ [λ◦ ± δ] for small δ. In this
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Algorithm 2: µSGD with L2 regularization

Input: S2x, µ , ` is a-lol, λ > 0, T > 0

θ0 ← 0
For any t = 1, . . . , T:

Pick i ∈ [|S2x|] uniformly at random
η ← 1/(λt)
Pick any v ∈ ∂`(yi〈θt, xi〉)
θt+1 ← (1− ηλ)θt − η(v +aµ/2 )

θt+1 ← min
{

θt+1, θt+1/(
√

λ · ‖θt+1‖2)
}

Output: θT

Algorithm 3: µ proximal algorithm with Θ(·) regularization

Input: S2x, µ , ` is a-lol; λ > 0; T > 0

θ0 ← 0
For any t = 1, . . . , T:

η ← 1/(λt) or found by line search
θt+1 ← proxλΘ

(
θt + η

(
∂RS2x ,`(θ

t) +aµ/2
))

Output: θT

case, vol2(F) is proportional to the “average feature norm”:

det
(

F>F
)

m
=

tr V>V
md

+ o(δ) = ∑i ‖xi‖2
2

md
+ o(δ) . (3.26)

Theorem 41 in Chapter 4 characterizes further this data dependent results by exploit-
ing additional assumptions.

We now consider two more concrete examples on how to take Step (ii) of the
abstract Meta Algorithm 1 for well-known learning algorithms. Algorithm 2, µSGD,
adapts SGD to weak supervision. For the sake of presentation, we work on a simple
version of SGD based on subgradient descent with L2 regularization from PEGASO
of Shalev-Shwartz et al. [2011]. Given µ, changes are trivial: construct S2x from S̃
and sum aµ/2 to the subgradients of each example of S2x. The only changes are
highlighted in grey.

A second noticeable example is given by the family of proximal algorithms [Bach
et al., 2012]. The same modus operandi leads to Algorithm 3, where the proximal
map is proxλΘ(x) = argminx′ λΘ(x′) + 1

2‖x − x′‖2
2 and Θ(·) is a regularizer, non

necessarily smooth. With some abuse of notation, ∂R indicates any vector in the
subdifferential set of the (decomposable) empirical risk. Once again, the adaptation
works by summing aµ/2 in the gradient step and changing the input to S2x.
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3.4 Discussion

We have presented novel theoretical tools apt to elaborate a learning theory for
weakly supervised problems. The level of abstraction is high enough to let us formu-
late a Meta Algorithm that is problem agnostic but simply adaptable for exploiting
well known gradient-based solvers. Finite sample bounds support the viability of
our approach. The rest of the Thesis will put these ideas to use by specialization
under different assumptions on the quality of supervision. Applications elsewhere
may easily draw from this Chapter as well.



§3.5 Appendix: proofs 33

3.5 Appendix: proofs

3.5.1 Proof of Corollary 20

We need to show the double implication that defines sufficiency for y.

⇒) By Factorization Theorem 18, RS ,`(h)− RS ′,`(h) is label independent only if
the odd part cancels out.

⇐) If µ = µ′ then RS ,`(h)− RS ′,`(h) is independent from the label, because the
label only appears in the mean operator due to Factorization Theorem 18.

3.5.2 Proof of Lemma 21

Consider the class of losses satisfying `(x)− `(−x) = 2ax. For any element of the
class, define `e(x) = `(x)− ax, which is even. In fact we have:

`e(−x) = `(−x) + ax = `(x)− 2ax + ax = `(x)− ax = `e(x) . (3.27)

3.5.3 Proof of Lemma 22

Suppose without loss of generality that xi = xm+i. The proof relies on the observation
that ∀σ ∈ Y2m:

argsup
θ∈H

ES [σ(x)〈θ, x〉] =
1

2m
argsup

θ∈H
∑

i
σi〈θ, xi〉 (3.28)

=
supH ‖θ‖2

‖∑i σixi‖2
∑

i
σixi . (3.29)

In fact, this follows from Cauchy-Schwartz inequality – the classifier that maximizes
the inner product with the sum is indeed proportional to the normalized sum, times
the maximal norm of a classifier. So:

R(H ◦ S2x) = EY2m sup
h∈H
{ES2x [σ(x)h(x)]} (3.30)

=
supH ‖θ‖2

2m
·EY2m




(
∑2m

i=1 σixi

)> (
∑2m

i=1 σixi

)

‖∑2m
i=1 σixi‖2


 (3.31)

= sup
H
‖θ‖2 ·EY2m

[
1

2m
·
∥∥∥∥∥

2m

∑
i=1

σixi

∥∥∥∥∥
2

]
. (3.32)

Remark that whenever σi = −σm+i, xi disappears in the sum, and therefore the max
norm for the sum may decrease as well. This suggests to split the 22m assignations
into 2m groups of size 2m, ranging over the possible number of observations taken
into account in the sum. They can be factored by a weighted sum of contributions of
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each subset of indices I ⊆ [m] ranging over the non-duplicated observations:

EY2m

[
1
m
·
∥∥∥∥∥

2m

∑
i=1

σixi

∥∥∥∥∥
2

]
=

1
22m ∑

I⊆[m]

2m−|I|

2m
· ∑

σ∈Y |I|

√
2

∥∥∥∥∥∑
i∈I

σixi

∥∥∥∥∥
2

. (3.33)

=

√
2

2m ∑
I⊆[m]

1
2m
· 1

2|I|
· ∑

σ∈Y |I|

∥∥∥∥∥∑
i∈I

σixi

∥∥∥∥∥
2︸ ︷︷ ︸

u|I|

. (3.34)

The
√

2 factor appears because of the fact that we now consider only the observations
of S . For any fixed I , we renumber its observations in [|I|] for simplicity, and observe
that, since

√
1 + x ≤ 1 + x/2:

u|I| =
1

2|I| ∑
σ∈Y |I|

√
∑
i∈I
‖xi‖2

2 + ∑
i1 6=i2

σi1 σi2 x>i1 xi2 (3.35)

=

√
∑i∈I ‖xi‖2

2

2|I| ∑
σ∈Y |I|

√
1 +

∑i1 6=i2 σi1 σi2 x>i1 xi2

∑i∈I ‖xi‖2
2

(3.36)

≤

√
∑i∈I ‖xi‖2

2

2|I| ∑
σ∈Y |I|

(
1 +

∑i1 6=i2 σi1 σi2 x>i1 xi2

2 ∑i∈I ‖xi‖2
2

)
(3.37)

=
√

∑
i∈I
‖xi‖2

2 +
1

2|I| · 2 ∑i∈I ‖xi‖2
2
· ∑

σ∈Y |I|
∑

i1 6=i2

σi1 σi2 x>i1 xi2 (3.38)

=
√

∑
i∈I
‖xi‖2

2 +
1

2|I| · 2 ∑i∈I ‖xi‖2
2
· ∑

i1 6=i2

x>i1 xi2 ·
(

∑
σ∈Y |I|

σi1 σi2

)

︸ ︷︷ ︸
=0

(3.39)

=
√

∑
i∈I
‖xi‖2

2 (3.40)

≤
√
|I| · X . (3.41)

Plugging this in Equation 3.34 yields:

1
X
·EY2m

[
1
m
·
∥∥∥∥∥

2m

∑
i=1

σixi

∥∥∥∥∥
2

]
≤
√

2
2m

m

∑
k=0

√
k

2m

(
m
k

)
. (3.42)

Since m is even:

EY2m

[
1

2m
·
∥∥∥∥∥

2m

∑
i=1

σixi

∥∥∥∥∥
2

]
≤
√

2
2m

(m/2)−1

∑
k=0

√
k

2m

(
m
k

)
+

√
2

2m

m

∑
k=m/2

√
k

2m

(
m
k

)
. (3.43)
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Notice that the left one trivially satisfies:

√
2

2m

(m/2)−1

∑
k=0

√
k

2m

(
m
k

)
≤
√

2
2m

(m/2)−1

∑
k=0

1
2m
·
√

m− 2
2

(
m
k

)
(3.44)

=
1
2
·
√

1
m
− 2

m2 ·
1

2m

(m/2)−1

∑
k=0

(
m
k

)
(3.45)

≤ 1
4
·
√

1
m
− 2

m2 (3.46)

Also, the right one satisfies:
√

2
2m

m

∑
k=m/2

√
k

2m

(
m
k

)
≤
√

2
2m

m

∑
k=m/2

√
m

2m

(
m
k

)
(3.47)

=
1√
2m
· 1

2m

m

∑
k=m/2

(
m
k

)
(3.48)

=
1
2
· 1√

2m
. (3.49)

We get:

1
X
·EY2m

[
1
m
·
∥∥∥∥∥

2m

∑
i=1

σixi

∥∥∥∥∥
2

]
≤ 1

4
·
√

1
m
− 2

m2 +
1
2
·
√

1
2m

(3.50)

=
1√
2m
·
(

1
2
+

1
2

√
1
2
− 1

m

)
. (3.51)

And finally:

R(H ◦ S2x) ≤ v · XH√
2m

, (3.52)

with:

v .
=

1
2
+

1
2

√
1
2
− 1

m
, (3.53)

as claimed.

3.5.4 Proof of Theorem 23

We start by proving a helper Lemma, an application of McDiarmid ’s inequality to
evaluate the convergence of the empirical mean operator to its population counter-
part.

Lemma 27. Suppose Rd ⊇ X = {x : ‖x‖2 ≤ X < ∞} be the observations space. Then for
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any δ > 0 with probability at least 1− δ:

‖µD − µS‖2 ≤ X ·
√

d
m

log
(

d
δ

)
. (3.54)

Proof Let S and S ′ be two learning samples that differ for only one example
(xi, yi) 6= (xi′ , yi′). Let first consider the one-dimensional case. We refer to the k-
dimensional component of µ with µk. For any S ,S ′ and any k ∈ [d] it holds:

∣∣∣µk
S − µk

S ′
∣∣∣ = 1

m

∣∣∣xk
i yi − xk

i′yi′
∣∣∣ (3.55)

≤ X
m
|yi − yi′ | (3.56)

≤ 2X
m

. (3.57)

This satisfies the bounded difference condition of McDiarmid’s inequality, which let
us write for any k ∈ [d] and any ε > 0 that:

P
(∣∣∣µk

D − µk
S
∣∣∣ ≥ ε

)
≤ exp

(
−mε2

2X2

)
(3.58)

and the multi-dimensional case, by union bound:

P
(
∃k ∈ [d] :

∣∣∣µk
D − µk

S
∣∣∣ ≥ ε

)
≤ d exp

(
−mε2

2X2

)
. (3.59)

Then by negation:

P
(
∀k ∈ [d] :

∣∣∣µk
D − µk

S
∣∣∣ ≤ ε

)
≥ 1− d exp

(
−mε2

2X2

)
, (3.60)

which implies that for any δ > 0 with probability 1− δ:

X

√
2
m

log
(

d
δ

)
≥ ‖µD − µS‖∞ ≥ d−1/2 ‖µD − µS‖2 . (3.61)

This concludes the proof.

We now restate and prove Theorem 23.

Theorem 23 Assume ` is a-lol and L-Lipschitz. Suppose Rd ⊇ X = {x : ‖x‖2 ≤
X < ∞} be the observations space, and H = {θ : ‖θ‖2 ≤ H < ∞} be the space of linear
hypotheses. Let c(X, H)

.
= maxy∈Y `(yXH). Let θ̂ = argminθ∈H RS ,`(θ). Then for any
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δ > 0, with probability at least 1− δ:

RD,`(θ̂)− RD,`(θ
?) ≤

√
2 + 1
2

· XHL√
m

+

c(X, H) ·
√

1
m

log
(

1
δ

)
+ 2|a|H · ‖µD − µS‖2 , (3.62)

or more explicitly:

RD,`(θ̂)− RD,`(θ
?) ≤

√
2 + 1
2

· XHL√
m

+

c(X, H) ·
√

1
m

log
(

2
δ

)
+ 2|a|XH ·

√
d
m

log
(

2d
δ

)
(3.63)

Proof Let θ? = argminθ∈H RD,`(θ). We have:

RD,`(θ̂)− RD,`(θ
?) =

1
2

RD2x ,`(θ̂) + a〈θ̂, µD〉 −
1
2

RD2x ,`(θ
?)− a〈θ?, µD〉 (3.64)

=
1
2
(

RD2x ,`(θ̂)− RD2x ,`(θ
?)
)
+ a〈θ̂− θ?, µD〉 (3.65)

=
1
2
(

RS2x ,`(θ̂)− RS2x ,`(θ
?)
)
+ a〈θ̂− θ?, µD〉 (3.66)

+
1
2

(
RD2x ,`(θ̂)− RS2x ,`(θ̂)− RD2x ,`(θ

?) + RS2x ,`(θ
?)
) }

A1 .

(3.67)

Step 3.64 is obtained by the equality RD,`(θ) =
1
2 RD2x ,`(θ) + a〈θ, µD〉 for any θ. Ap-

plying the same equality with regard to S , we have:

RD,`(θ̂)− RD,`(θ
?) ≤ RS ,`(θ̂)− RS ,`(θ

?)︸ ︷︷ ︸
A2

+ a〈θ̂− θ?, µD − µS 〉︸ ︷︷ ︸
A3

+A1 . (3.68)

A2 is never more than 0 because θ̂ is the minimizer of RS ,`(θ). From the Cauchy-
Schwarz inequality and bounded models it holds true that:

A3 ≤ |a|
∥∥∥θ̂− θ?

∥∥∥
2
·
∥∥∥µD − µS

∥∥∥
2
≤ 2|a|H

∥∥∥µD − µS
∥∥∥

2
. (3.69)

We could treat A1 by calling standard bounds based on Rademacher complexity on
a sample with size 2m. Since the complexity R(H ◦ S) does not depend on labels,
its value would be the same — modulo the change of sample size — for both S and
S2x, as they are computed with same loss and observations. However, the special
structure of S2x allows us to obtain a tighter structural complexity term, due to
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cancellation effects as proven by Lemma 22. In order to exploit it, we first observe:

A1 =
1
2

(
RD2x ,`(θ̂)− RS2x ,`(θ̂)− RD2x ,`(θ

?) + RS2x ,`(θ
?)
)

(3.70)

≤ sup
θ∈H
|RD2x ,`(θ)− RS2x ,`(θ)| (3.71)

= φ(S2x) . (3.72)

Similarly to the proof of Theorem 5, we recall Lemma 6 and notice that for any
bounded loss function, the function φ satisfies McDiarmid’s inequality with C =
1/m · c(X, H). Therefore with probability ≥ 1− δ:

A1 ≤ 2L ED2x R(H ◦ S2x) +
c(X, H)

m

√
m log

1
δ

(3.73)

≤ 2v
XHL√

2m
+ c(X, H)

√
1
m

log
1
δ

(3.74)

≤
√

2 + 1
2

XHL√
m

+ c(X, H)

√
1
m

log
1
δ

(3.75)

where we also applied Lemmas 14 and 22 and the fact that:

v =
1
2
+

1
2

√
1
2
− 1

m
<

√
2 + 1

2
√

2
, ∀m > 1.

Finally, we get with probability at least 1− δ, δ > 0 that:

RD,`(θ̂)− RD,`(θ
?) ≤

√
2 + 1
2

· XHL√
m

+ c(X, H) ·
√

1
m

log
(

1
δ

)
+ 2|a|H · ‖µD − µS‖2 . (3.76)

This proves the first statement. For the second statement, we apply Lemma 27 that
provides the probabilistic bound for the norm discrepancy of the mean operators. We
need to combine the two results. For any two events E, F it holds that:

1−P(E ∧ F) = P(¬(E ∧ F)) (3.77)

= P(¬E ∨ ¬F) (3.78)

≤ P(¬E) + P(¬F) (3.79)

Now consider that events:

E .
=

{
3.76

}
, F .

=

{
‖µD − µS‖2 ≤ X ·

√
d
m

log
(

2d
δ

)}

are true with probability at least 1− δ/2, or equivalently they are false with at most
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δ/2 probability. We write:

1−P (E ∧ F) ≤ δ/2− δ/2 = δ , (3.80)

and therefore with 1− δ probability: P (E ∧ F) ≥ 1− δ. Finally:

RD,`(θ̂)− RD,`(θ
?) ≤

√
2 + 1
2

· XHL√
m

+

c(X, H) ·
√

1
m

log
(

2
δ

)
+ 2|a|XH ·

√
d
m

log
(

2d
δ

)
. (3.81)

3.5.5 Proof of Lemma 24

Consider Definition 9. Since we assume convex and differentiable losses, it suffices
to compute the derivative in 0.

`′(x) = `′e(x) + a (3.82)

and because `′e is an odd function, as derivative of an even function, `′e(0) = 0.
Therefore:

`′(0) < 0 ⇐⇒ a < 0 (3.83)

3.5.6 Proof of Theorem 26

Let us define:

RSX ,`(θ, µ) =
1

2m

(
∑

i∈[m]
∑
σ

`(σ〈θ, xi〉)
)
+ a〈θ, µ〉 . (3.84)

Define also the regularized loss:

RSX ,`(θ, µ, λ)
.
= RSX ,`(θ, µ) + λ‖θ‖2

2 . (3.85)

Our proof begins following the same first steps as the proof of Lemma 17 in Altun
and Smola [2006] (recalled in Lemma 25) and adding the steps that handle the lower
bound on `′′. Consider the following auxiliary function A`(τ):

A`(τ)
.
=
(
∇RSX ,`(θ

?, µ)−∇RSX ,`(θ̂, µ̂)
)>

(τ − θ̂) + λ
∥∥τ − θ̂

∥∥2
2 , (3.86)

where the gradient of RSX ,` is computed with respect to parameter θ. The gradient
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of A`(.) with respect to τ is:

∇A`(τ) = ∇RSX ,`(θ
?, µ)−∇RSX ,`(θ̂, µ̂) + 2λ(τ − θ̂) . (3.87)

The gradient is 0 when τ = θ?:

∇A`(θ
?) = ∇RSX ,`(θ

?, µ)−∇RSX ,`(θ̂, µ̂) + 2λ(θ? − θ̂) (3.88)

= ∇RSX ,`(θ
?, µ, λ)−∇RSX ,`(θ̂, µ̂, λ) (3.89)

= 0 , (3.90)

since both gradients are 0 because of the optimality of θ? and θ̂ with respect to
RSX ,`(·, µ, λ) and RSX ,`(·, µ̂, λ). Moreover, the Hessian H of A` is HA`(τ) = 2λI � 0,
thus A` is convex and therefore we can state that it is minimal at τ = θ?. Addition-
ally, A`(θ̂) = 0 by definition. It comes thus A`(θ

?) ≤ 0, which yields equivalently:

0 ≥
(
∇RSX ,`(θ

?, µ)−∇RSX ,`(θ̂, µ̂)
)>

(θ? − θ̂) + λ
∥∥θ? − θ̂

∥∥2
2 (3.91)

=

(
1

2m ∑
y

∑
i
∇`(y〈θ?, xi〉) + aµ− 1

2m ∑
y

∑
i
∇`(y〈θ̂, xi〉)− aµ̂

)>
(θ? − θ̂)

+ λ
∥∥θ? − θ̂

∥∥2
2 (3.92)

=
1

2m

(
∑
y

∑
i
`(y〈θ?, xi〉)−∑

y
∑

i
`(y〈θ̂, xi〉)

)>
(θ? − θ̂)

︸ ︷︷ ︸
.
=β

+ a (µ− µ̂)> (θ? − θ̂) + λ
∥∥θ? − θ̂

∥∥2
2 . (3.93)

Let us lower bound β. We have `(y〈θ?, x〉) = y`′(y〈θ?, x〉)x, and a Taylor expansion
brings that for any θ?, θ̂, there exists some α ∈ [0, 1] such that, defining:

uα,i
.
= y〈αθ? + (1− α)θ̂, xi〉 , (3.94)

we have:

`′(y〈θ?xi〉) = `′(y〈θ̂, xi〉) + y〈θ? − θ̂, xi〉`′′(uα,i) . (3.95)
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Thus we get:

β =

(
∑
y

∑
i
`(y〈θ?, xi〉)−∑

y
∑

i
`(y〈θ̂, xi〉)

)>
(θ? − θ̂) (3.96)

=

(
∑
y

∑
i

y
(
`′(y〈θ?, xi〉)− `′(y〈θ̂, xi〉)

)
xi

)>
(θ? − θ̂) (3.97)

=

(
∑
y

∑
i
(θ? − θ̂)>xi`

′′(uα,i)xi

)>
(θ? − θ̂) (3.98)

= 2 ∑
i

(
(θ? − θ̂)>xi

)2
`′′(uα,i) (3.99)

≥ 2γ ∑
i

(
(θ? − θ̂)>xi

)2
(3.100)

= 2γ(θ? − θ̂)>SS>(θ? − θ̂) , (3.101)

where matrix S ∈ Rd×m is formed by the observations of SX in columns. Inequality
3.100 comes from the fact that we require γ-strongly convex losses that are also twice
differentiable, which implies that the second derivative is lower bounded by γ.

Define T .
= (d/ ∑i ‖xi‖2

2)SS>. Its trace satisfies tr T = d. Let λd ≥ λd−1 ≥ ... ≥
λ1 > 0 denote eigenvalues of T, with λ1 strictly positive because SS> = F>F � 0.
The Arithmetic Mean-Geometric inequality brings:

d

∏
2

λk ≤
(

1
d− 1

d

∑
k=2

λk

)d−1

(3.102)

=

(
tr T − λ1

d− 1

)d−1

(3.103)

=

(
d− λ1

d− 1

)d−1

(3.104)

≤
(

d
d− 1

)d−1

. (3.105)

Multiplying both side by λ1 and rearranging yields:

λ1 ≥
(

d− 1
d

)d−1

det T (3.106)

Let λ◦ > 0 denote the minimal eigenvalue of SS>. It satisfies:

λ◦ =

(
1
d ∑

i
‖xi‖2

2

)
λ1 (3.107)
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and thus it comes from inequality 3.106:

λ◦ ≥
(

d− 1
d

)d−1 ( d
∑i ‖xi‖2

2

)d−1

det SS> (3.108)

=

(
d− 1

d

)d−1

det



(

d

∑i ‖xi‖2
2

)1− 1
d

SS>


 (3.109)

=

(
d− 1

d

)d−1

det F>F (3.110)

=

(
d− 1

d

)d−1

vol2(F) (3.111)

≥ 1
e

vol2(F) . (3.112)

We have used notation vol(F) .
=

√
det F>F. Since:

(θ? − θ̂)>SS>(θ? − θ̂) ≥ λ◦
∥∥θ? − θ̂

∥∥2
2 , (3.113)

combining 3.101 with 3.112 yields the following lower bound on β:

β ≥ 2
e

γ vol2(F)
∥∥θ? − θ̂

∥∥2
2 . (3.114)

Going back to 3.93, we get:

λ
∥∥θ? − θ̂

∥∥2
2 + a (µ− µ̂)> (θ? − θ̂) +

1
em

γ vol2(F)
∥∥θ? − θ̂

∥∥2
2 ≤ 0 . (3.115)

Since a (µ− µ̂)> (θ? − θ̂) ≤ |a| ‖µ− µ̂‖2

∥∥θ? − θ̂
∥∥

2 , after chaining the inequalities
and solving for

∥∥θ? − θ̂
∥∥

2 we get:

∥∥θ? − θ̂
∥∥

2 ≤
|a|

λ + 1
em γvol2(F)

‖µ− µ̂‖2 , (3.116)

as claimed.

3.6 Appendix: additional formal results

3.6.1 Mean and covariance operators

The intuition behind the relevance of the mean operator becomes clear once we
rewrite it as follows.

Lemma 28. Let µ
.
= E[yx] and Cov[x, y] .

= ES
[
(yx− µ)2

]
, respectively the mean and the
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covariance operators. Let π+
.
= ES1{y > 0} be the positive label proportion of S . Then:

µ = Cov[x, y] + (2π+ − 1)ES [x] . (3.117)

Moreover, if observations are centered (ES [x] = 0) or the labels are balanced (π+ = 1/2),
then µ = Cov[x, y].

Proof

Cov[x, y] = ES [yx]−ES [y]ES [x] (3.118)

= µ−
(

1
m ∑

i:yi>0
1− 1

m ∑
i:yi<0

1

)
ES [x] (3.119)

= µ− (2π+ − 1)ES [x] . (3.120)

The second statement follows immediately.

We have come to the unsurprising fact that — when observations are centered —
the covariance Cov[x, y] is what we need to know about the labels for learning lin-
ear models. The rest of the loss (in light of Factorization) may be seen as a data
dependent regularizer.

3.6.2 The generality of factorization

Factorization is ubiquitous for any (margin) loss, beyond the theory seen so far. The
decomposition on even and odd functions is actually all we need to factor `.

Theorem 29 (Factorization). For any sample S and hypothesis h the empirical `-risk can
be written as:

RS ,`(h) =
1
2

ES
[
∑σ∈Y `(σh(x))

]
+ ES

[
`o(yh(x))

]
(3.121)

where `o(·) is odd and `e(·) .
= ∑σ∈Y `(σh(·)) is even and both uniquely defined.

Its range of validity is exemplified by 01 loss, a non-convex discontinuous piece-
wise linear function, which factors as:

`e(x) =
{ 1

2 x 6= 0
1 otherwise

, `o(x) = −1
2

sign(x) . (3.122)

It follows immediately that ES [`o(·)] is sufficient for y. However, `o is a function
of model θ. This defeats the purpose of a sufficient statistic, which we aim to be
computable from data only and it is the main reason to define lols.

Moreover, Factorization goes beyond simple linear models, and can also be for-
mulated for RKHS. To show that, notice that we satisfy all hypotheses of the Repre-
senter Theorem [Schölkopf and Smola, 2002].
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Theorem 30. Let h(x) : X → H be a feature map into a Reproducing Kernel Hilbert Space
(RKHS) H with symmetric positive definite kernel k : X × X → R, such that h : x →
k(·, x). For any learning sample S , the empirical `-risk RS ,`(h) with Ω : ||h||H → R+

regularization can be written as:

1
2

ES
[
∑σ∈Y `(σh(x))

]
+ ES

[
`o(yh(x))

]
+ Ω(||h||H) (3.123)

and the optimal hypothesis admits a representation of the form h(x) = ∑i∈[m] αik(x, xi).

It follows that all results of this Chapter may be read in the context of non-
parametric models, with the kernel mean operator as sufficient statistic.

Finally, we have formulated the Factorization Theorem for classification prob-
lems. We can show a similar statement for regression with square loss `(〈θ, xi〉, y) =
(〈θ, xi〉 − yi)

2 :

ES [(〈θ, x〉 − y)2] = ES
[
〈θ, x〉2

]
+ ES

[
y2]− 2〈θ, µ〉 . (3.124)

Taking the minimizers on both sides we obtain:

argmin
θ

ES [(〈θ, x〉 − y)2] = argmin
θ

ES
[
〈θ, x〉2

]
− 2〈θ, µ〉 (3.125)

= argmin
θ

∥∥∥X>θ
∥∥∥

2

2
− 2〈θ, µ〉 . (3.126)

This last result opens further applications yet, in the Thesis, we keep our focus
on classification problems.

3.6.3 Factorization of non linear-odd losses

When `o is not linear, we can find upper bounds in the form of affine functions. It
suffices to be continuous and have asymptotes at ±∞.

Lemma 31. Let the loss ` be continuous. Suppose that it has asymptotes at ±∞, i.e. there
exist c1, c2 ∈ R and d1, d2 ∈ R such that:

lim
x→+∞

`(x)− c1x− d1 = 0, lim
x→−∞

`(x)− c2x− d2 = 0 (3.127)

then there exists q ∈ R such that: `o(x) ≤ c1+c2
2 x + q .

Proof One can compute the limits at infinity of `o to get:

lim
x→+∞

`o(x)− c1 + c2

2
x =

d1 − d2

2
(3.128)

and:

lim
x→−∞

`o(x)− c1 + c2

2
x =

d2 − d1

2
. (3.129)
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Then q .
= sup{`o(x)− c1+c2

2 x} < +∞ as `o is continuous. Thus `o(x)− c1+c2
2 x ≤ q.

The Lemma covers many cases of practical interest outside the class of lols, e.g.
hinge, absolute and Huber losses. Exponential loss is the exception since `o(x) =
−sinh(x) cannot be bounded. Consider for instance hinge loss: `(x) = [1− x]+ is
not differentiable in 1, however it is continuous with asymptotes at ±∞. Therefore,
for any θ its empirical risk is bounded as:

RS ,hinge(θ) ≤
1
2

RS2x ,hinge(θ)−
1
2
〈θ, µ〉+ q , (3.130)

since c1 = 0 and c2 = 1. An alternative proof of this result on hinge is provided next,
giving the exact value of q = 1/2. The odd term for hinge loss is:

`o(x) =
1
2
([1− x]+ − [1 + x]+) (3.131)

=
1
4
(−2x + |1− x| − |1 + x|) (3.132)

due to an arithmetic trick for the max function:

max(a, b) = (a + b)/2 + |b− a|/2 . (3.133)

Then for any x:

|1− x| ≤ |x|+ 1, (3.134)

|1 + x| ≥ |x| − 1 (3.135)

and therefore:

`o(x) ≤ 1
4
(−2x + |x|+ 1− |x|+ 1) =

1
2
(1− x) . (3.136)

We also provide a “if-and-only-if" version of Lemma 31 fully characterizing which
losses can be upper bounded by a lol.

Lemma 32. Let ` : R → R a continuous function. Then there exists c1, d1, d2 ∈ R such
that:

lim sup
x→+∞

`o(x)− c1x− d1 = 0 (3.137)

and:
lim sup

x→−∞
`o(x)− c1x− d2 = 0 , (3.138)

if and only if there exists q, q′ ∈ R such that `o(x) ≤ q′x + q for every x ∈ R.

Proof
⇒) Suppose that such limits exist and they are zero for some c1, d1, d2. Let prove
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that `o is bounded from above by a line. It holds that:

q = sup
x∈R

{`o(x)− c1x} < ∞ , (3.139)

because `o is continuous. So for every x ∈ R:

`o(x) ≤ c1x + q . (3.140)

In particular we can take c1 as the angular coefficient of the line.
⇐) Vice versa we proceed by contradiction. Suppose that there exists q, q′ ∈ R

such that `o is bounded from above by `(x) = q′x + q. Suppose in addition that the
conditions on the asymptotes (3.137) and (3.138) are false. This implies either the
existence of a sequence xn → +∞ such that:

lim
n→∞

`o(xn)− q′xn → ±∞ , (3.141)

or the existence of another sequence x′n → −∞:

lim
n→∞

`o(yn)− q′x′n → ±∞ . (3.142)

On one hand, if at least one of these two limits is +∞ then we already reach a
contradiction, because `o(x) is supposed to be bounded from above by `(x) = q′x+ q.
Suppose on the other hand that xn → +∞ is such that:

lim
n→+∞

`o(xn)− q′xn → −∞ . (3.143)

Then defining x′n = −xn we have:

lim
n→+∞

`o(wn)−mx′n → +∞ , (3.144)

and for the same reason as above we reach a contradiction.
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3.6.4 More graphs on linear and non-linear-odd losses
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Figure 3.2: Linear-odd: Matsushita, double-hinge, ρ-loss. Non-linear-odd: 0-1, hinge,
Huber.

3.6.5 The linear-odd losses of du Plessis et al. [2015]

The work of du Plessis et al. [2015] shows that a linear-odd condition on a convex `
allows one to derive a tractable, i.e. still convex, loss for learning with positive and
unlabeled data. The approach is similar to ours as it isolates a label-free term in the
loss, with the goal of leveraging on the unlabeled examples too. Their manipulation
of the loss is not equivalent to Theorem 18 though, as we explain here. Beside that,
since we reason at the higher level of weakly supervised learning, we may frame
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a solution for this setting by calling µSGD on µ̂ defined above or by building on
estimators derived from geometrical ideas discussed in Chapter 4.

For the sake of completeness, we review the use of convex lols in the cited work.
Let π+

.
= P(y = 1) and let D+ and D− respectively the set of positive and negative

examples in D. Consider first:

E(x,·)∼D [`(−〈θ, x〉)] (3.145)

= π+E(x,·)∼D+
[`(−〈θ, x〉)] + (1− π+)E(x,·)∼D− [`(−〈θ, x〉)] (3.146)

Then, it is also true that:

E(x,y)∼D [`(y〈θ, x〉)] (3.147)

= π+E(x,y)∼D+
[`(y〈θ, x〉)] + (1− π+)E(x,y)∼D− [`(y〈θ, x〉)] . (3.148)

Solve Equation 3.145 for:

(1− π+)E(x,y)∼D− [`(y〈θ, x〉)] = (1− π+)E(x,y)∼D− [−`(−〈θ, x〉)] (3.149)

and substitute it into Equation 3.147 so as to obtain:

E(x,y)∼D [`(y〈θ, x〉)] (3.150)

= π+E(x,y)∼D+
[`(y〈θ, x〉)] + E(x,·)∼D [`(−〈θ, x〉)]

− π+E(x,·)∼D+
[`(−〈θ, x〉)] (3.151)

= π+

(
E(x,y)∼D+

[`(+〈θ, x〉)]−E(x,·)∼D+
[`(−〈θ, x〉)]

)

+ E(x,·)∼D [`(−〈θ, x〉)] (3.152)

=
π+

2
E(x,y)∼D+

[`o(+〈θ, x〉)] + E(x,·)∼D [`(−〈θ, x〉)] , (3.153)

by our usual definition of `o(x) = 1
2 (`(x) − `(−x)). Recall that one of the goals

of the authors is to conserve the convexity of this new crafted loss function. Then,
du Plessis et al. [2015, Theorem 1] proceed stating that when `o is convex, it must
also be linear. And therefore they must focus on lols. Theorem 1 of du Plessis et al.
[2015] is immediate from the point of view of our theory: in fact, an odd function
can be convex or concave only if it also linear. The resulting expression based on the
fact `(x)− `(−x) = 2ax simplifies into:

E(x,y)∼D [`(y〈θ, x〉)] = aπ+E(x,y)∼D+
[y〈θ, x〉] + E(x,·)∼D [`(−〈θ, x〉)] (3.154)

= aπ+µD+ + E(x,·)∼D [`(−〈θ, x〉)] . (3.155)

where µD+ is a mean operator computed on positive examples only. Notice how the
second term is instead label independent, although it is not an even function as in
the Factorization Theorem.
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3.7 References

The name mean operator in this context was originally used by Quadrianto et al. [2009].
In the theory of Hilbert space embedding, its importance is due to the injectivity of
the map — under conditions on the kernel — which is used in applications such
as two-sample and independence tests, feature extraction and covariate shift [Smola
et al., 2007].

Factorization of logistic loss has been derived in other contexts in literature [Jaakkola
and Jordan, 2000; Gao et al., 2016]. The work of Zantedeschi et al. [2016] implicitly
utilizes Loss Factorization for formulating the β-risk, an augmented version of sur-
rogate risks incorporating a confidence parameter for each individual label.

In most of this Chapter, we kept the lighter notation of linear classifiers, but
nothing should prevent the extension of our results to non-parametric models, ex-
changing x with an implicit feature map h(x) recalling Theorem 30. A kernelized
version of the mean-covariance operators Lemma 28 is given in Song et al. [2009]. A
version of Theorem 23 may be derived for RKHS on top of Bartlett and Mendelson
[2002]; Kakade et al. [2009].

3.7.1 The two-step procedure of Raghunathan et al. [2016]

The publication of our Patrini et al. [2016a] happened concurrently with Raghu-
nathan et al. [2016], which shares many insights with our methodology. The authors
design the same two-step procedure that amounts to sufficient statistic estimation
followed by convex optimization. In fact, the underlying motivation is to avoid non-
convex optimization and EM when labels are only known by indirect supervision.
The learning framework of choice is MLE of graphical models, allowing an easy ex-
tension of the approach to structured label spaces — this is, in particular, an aspect
not touched by our Thesis.

The two examples of weak supervision focus of Raghunathan et al. [2016] are
close to what we consider in the next Chapters. The scenario of learning under local
privacy can be mapped to the one of noisy labels; in particular, label corruption is
dictated by a randomization schema that achieves differential privacy. The label suf-
ficient statistic is estimated in a way that resembles Equation 5.2 in Chapter 5, with
the same guarantee of unbiasedness. The setting of learning with lightweight annota-
tion is a form of aggregated-level supervision, although in the context of structured
prediction. The sufficient statistic is obtained by solving a linear system, in a similar
fashion of Equation 4.7 and followers in Chapter 4.

Finally, Raghunathan et al. [2016] elaborate on the statistical efficiency of the pro-
posed estimators and respective models, when compared to a model fitted by MLE.
The two-step procedure is also studied by a geometrical viewpoint. The problem is
mapped to the minimization of a KL divergence on an exponential family defined
over a supervision function of y, not y itself, which makes the problem of MLE non-
convex. It is shown that the two-step approach first optimizes over a relaxed set —
the sufficient statistic estimation — and then projects onto the space of the exponen-
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tial family, therefore bypassing the non-convex objective by an approximate solution.

3.7.2 Learning reductions

We have described the two-step algorithm as a procedure for casting a weakly super-
vised learning problem into an optimization problem, that is equivalent to a fully
supervised problem. This is achieved via the equivalence expressed by Factorization.
Solving a Machine Learning problem by solutions to other learning problems is a
learning reduction [Beygelzimer et al., 2015]. Our work can be interpreted as such.

Following Beygelzimer et al. [2005], we define a supervised classification task as
a triple (K,Y , `), with supervised advice K, predictions space Y and loss `. A learn-
ing reduction is a procedure that casts a task (K,Y , `) into a simpler “reduced’ task
(K′,Y ′, `′). We assume that ` is linear-odd and K represents any sort of weak super-
vision. Then, our two-step procedure is a reduction to binary classification (Y ,Y , `).
The reduction of Meta algorithm 1 is somehow simple, in the sense that Y does not
change and neither does `. Algorithms 2 and 3 are examples of learning reductions
from any weakly supervised classification problem to binary classification. Yet we ac-
tually modify the internal code of the “reduced learner”, the binary classifier, which
contrasts with the concept of reduction. However, take as example Algorithm 2. We
could as well write subgradients step as

1
2
(
∂`(〈θt, xi〉) + ∂`(−〈θt, xi〉)

)
+ aµ , (3.156)

which equals ∂`, and thus the fully supervised SGD would be effectively untouched.



Chapter 4

Learning from label proportions

This Chapter is devoted to the problem of learning from label proportions. Loss Fac-
torization is put to use by showing that we can learn from label proportions only via
the estimation of the label sufficient statistic. Several formal guarantees are provided
along with two practical algorithms which fill the gap left open the in last Chapter.
In particular, we build on the Mean Map of [Quadrianto et al., 2009], relaxing its
assumptions and yet proving finite sample guarantees for the estimation of the suf-
ficient statistic. We also introduce a generalization of Rademacher complexity that is
more meaningful in this learning setting. We show that our approach is particularly
effective by extensive experiments simulating the construction of the instance groups
and relative label proportions. The performance success is measured both against
prior work and to the closeness to a fully supervised “Oracle”.

4.1 Motivation

We are interested in learning a binary classifier with supervision at the level of groups
of observations, called bags. The type of information we assume available is the label
proportions per bag, indicating the fraction of positive binary labels of its observa-
tions. We refer to this framework as learning from label proportions (LLP) [Quadrianto
et al., 2009; Yu et al., 2014b]. Several applications fit the LLP abstraction:

(i) Only aggregated labels can be obtained due to the physical limits of measure-
ment tools or constraints of communication and storage, as in particle mass spec-
trometry and high energy physics [Chen et al., 2006; Musicant et al., 2007], quality
control in metallurgy [Stolpe and Morik, 2011] and embryos implantation for hu-
man assisted reproduction [Hernández-González et al., 2016]. Similarly, in sentiment
analysis positive/negative rates are given to whole documents, but we may be inter-
ested in attributing the sentiment to individual sentences [Kotzias et al., 2015].

(ii) Labels existed once but they are now given in an aggregated fashion for
privacy-preserving reasons, as in medical databases [Bhowmik et al., 2015], fraud
detection [Rüping, 2010], banking [Ma et al., 2016], house price market, election re-
sults, census data, etc.

51
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(iii) The problem is semi- or unsupervised but it is simple to obtain additional
supervision for the unlabeled observations in the form of expectation from other
data source or by domain experts [Quadrianto et al., 2009; Liang et al., 2009]. This is
sometimes called distant supervision, where individual labels are not only unknown
but also virtually never measured or recorded. Supervision is given by pairing two
or more data domains: on the one side, the individual feature vectors and, on the
other side, aggregated variables from an additional related source of information.
For instance, Twitter data can be paired with constraints from county demographics,
trends in first names and exemplar Twitter accounts strongly associated with a class
label [Mohammady and Culotta, 2014; Ardehaly and Culotta, 2015]. To give another
example, advertising experts can estimate the rate of successful of ads at a campaign
level, while the learning problem concerns the effectiveness of each individual ban-
ner and links shown to users [Wager et al., 2015]. Aggregate labels are frequently
computed in terms of ratios or percents, i.e. proportions.

(iv) In Computer Vision applications, supervision is frequently only available to
a higher level than the one interesting for prediction. For example in object detec-
tion, image segmentation and region recognition, a predictor should classify image
patches or pixels, but those are seldom labeled in annotated image datasets [Kuck
and de Freitas, 2005; Chen et al., 2009]. The problem of detecting events in videos
by classifying singular frames is characterized by the same kind of weak supervision
[Lai et al., 2014]. An example is the case of predicting per-pixel ice concentration
on satellite images, when only region-level concentration is available from experts
annotation [Li and Taylor, 2015]. Methods for LLP have also been used for learning
“human nameable properties” of images [Yu et al., 2014a].

4.2 Learning setting

In learning from label proportions, we do not observe directly S but SX, which
denotes the learning sample without any label. We are given its partition in n > 1
bags, that is SX =

⋃
j Sj, j ∈ [n] and ∀j 6= j′,Sj ∩ S ′j = ∅. This is by no means

restrictive: the case when bags constitute a cover instead of a partition of SX can be
reduced to the defined setting by copying examples among bags and by reweighing
the loss accordingly. The “bag assignment function” that partitions S is unknown
but fixed. We do not assume any knowledge about how observations have been
partitioned, in spite of the fact that it is easy to imagine several applications for which
something about the process is known. Each bag j is provided with its respective label
proportion:

πj
.
= ESj [y = 1] (4.1)

and bag proportions pj
.
= mj/m with mj = |Sj|. For the sake of clarity, in this

Chapter we denote use i, j and k to refer respectively to examples, bags and features.
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loss name `(x) −φ(x)

logistic loss log(1 + exp(−x)) −x log x− (1− x) log(1− x)
square loss (1− x)2 x(1− x)

Matsushita loss −x +
√

1 + x2
√

x(1− x)

Table 4.1: Correspondence between permissible function φ and loss `.

H is be the space of linear classifiers — for a kernelized version of our algorithms we
point to the formulation of Quadrianto et al. [2009] that constitutes the basis of our
algorithmic contributions.

4.2.1 Symmetric proper losses

We briefly discuss a particular class of losses that are called symmetric proper losses
(spl). While not necessary for the statement of the algorithms, some theoretical
guarantees derived in this Chapter assume to work with the convenient functional
shape of spls. Conceptually, we are not moving away from the framework presented
in Chapter 3, since the class linear-odd losses has been shown to strictly include the
one defined here. Symmetric proper losses are axiomatized in Nock and Nielsen
[2009].

Definition 33 (Symmetric proper losses). A loss `(y, h(x)) is called symmetric proper
(spl) if it is:

(i) lower bounded
(ii) proper
(iii) symmetric, that is, `(y, h(x)) = `(−y,−h(x))
(iv) twice differentiable

Notice that since we consider margin losses (Definition 2), condition (iii) is always
satisfied. There exists a bijection between the set of symmetric proper losses and a
set of permissible functions [Kearns and Mansour, 1996] φ which are differentiable,
strictly convex, symmetric about 1/2 and with dom(φ) ⊇ [0, 1]. We also let bφ

.
=

φ(1/2)− aφ > 0 and φ? be the convex conjugate of φ. The bijection is the property
that we need, formalized in the next Lemma from Nock and Nielsen [2009].

Lemma 34. A function ` is a symmetric proper loss if and only if there exists a permis-
sible function φ such that:

`(x) = aφ +
φ?(−x)

bφ
. (4.2)

This representation of spl, which is originally obtained through Bregman diver-
gences in Nock and Nielsen [2009], is sufficient to prove that spls factor the same way
as linear-odd losses; we have shown that in Chapter 3. The original, more involved
proof of Factorization for spl is contained Patrini et al. [2014], Lemma 1.
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4.3 Estimating the sufficient statistic

In a direct implementation of our two-step framework (Meta Algorithm 1), the es-
timation of the mean operator appears to be the learning bottleneck for LLP. The
mean operator is in fact unknown since we cannot recover it simply from the label
proportions. We start by expanding the mean operator in its bag-wise label-wise
components:

µ = ES [yx] (4.3)

=
n

∑
j=1

pj ESj [yx] (4.4)

=
n

∑
j=1

pj

(
ESj [x, y = 1] + ESj [x, y = −1]

)
(4.5)

=
n

∑
j=1

pj

(
πj ESj [x|y = 1]− (1− πj) ESj [x|y = −1]

)
. (4.6)

The quantities pj and πj are known. So our problem is turned into the estimation of
2n vectors of unknowns ESj [x|y] ∈ Rd. Those are the average feature vector — the
center — for each bag conditioned to the label sign. How can we use the information
available to compute those centers? We come up with a linear system of equations
of which they are the only unknowns. By law of total probability:

ES [x] = ∑
y∈Y

πj ESj [x|y] , (4.7)

where every ESj [x] can be computed even without label knowledge as they are sim-
ply the bag-wise average feature vectors. For convenience, we rewrite the system in
matrix form. Let by

j = ESj [x|y] and bj = ESj [x]. The 2n by
j s are solutions of:

B−Π>B± = 0 , (4.8)

where B .
= [b1|b2|...|bn]> ∈ Rn×d, Π .

= [diag(π)|diag(1 − π)]> ∈ R2n×n and π

stacks together all label proportions in a vector. B± ∈ R2n×d is the matrix of un-
knowns:

B± .
=
[

b+1
1 |b+1

2 |...|b+1
n︸ ︷︷ ︸

(B+)>

∣∣∣ b-1
1 |b-1

2 |...|b-1
n︸ ︷︷ ︸

(B−)>

]>
. (4.9)

System 4.8 is under-determined, as it is made of n× d equations on 2n× d unknowns.
This fact should not be a surprise as it expresses the ill-posed nature of the problem
of learning a classifier with label proportions only. To solve the system we need to
resort to additional assumptions. We remark that solving System 4.8 accounts for the
first estimation step, followed by Equation 4.3 to recover the mean operator. We now
focus on solving the linear system.
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Algorithm 4: Mean Map (MM)
Input: Sj, πj, pj, ∀j ∈ [n], ` is a-lol, λ > 0
B̂± ← Π†B
µ̂← ∑y∈Y yp(y)b̂y

θ̂← argminθ
1

2m ∑m
i=1 ∑y∈Y `(y〈θ, xi〉) + a〈θ, µ̂〉+ λ‖θ‖2

2

Output: θ̂

4.4 Mean Map algorithm of Quadrianto et al. [2009]

Quadrianto et al. [2009] originally propose this framework for LLP. It enforces a ho-
mogeneity assumption, that is a statement of conditional independence for j:

(A4.0) ∀j, ESj [x|y] = ES [x|y] .

Under this hypothesis, the number of unknowns falls to 2d. This is enough to
obtain a system that is not under-determined, granted that n ≥ 2. In this case, the
linear system is simplified by defining B± .

= [b+1, b-1]> ∈ Rn×d and Π .
= [π|1−π] ∈

Rn×2, and the solution is found by pseudo-inversion as B̂± = Π†B. Let b̂y denote the
rows of B̂± in lieu of the true by = ES [x|y]. The mean operator is then estimated by:

µ̂ = ∑
y∈Y

yp(y)b̂y , (4.10)

where p(y) is the probability of the label over the whole S and can be derived from
π. This is the effectively the first example of implementation of the Meta Algorithm
1. We state it in Algorithm 4. The last step of convex optimization is expressed with
L2 regularization.

4.5 Laplacian Mean Map

Our proposal, the Laplacian Mean Map (LMM) algorithm, aims to solve System 4.8 at
a larger extent. In order to do that, we relax the homogeneity assumption as:

(A4.1) ∀j, j′ if j ≈ j′ then ESj [x|y] ≈ ESj′ [x|y] .

That is, instead of setting every ESj [x|y] equal for each bag j for a given y, we as-
sume them close when bags are similar, while none is constrained to be equal. The
similarity between bags j and j′ is a domain-specific parameter of the algorithm and
we will refer to it by vj,j′ ≥ 0; we discuss the choice of v below. To incorporate the
assumption into the estimation, we solve System 4.8 by least square minimization
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with regularization as:

argmin
b1

j ,b−1
j

∑
j

(
bj − πjb1

j + (1− πj)b−1
j

)2

+ γ ∑
j,j′

vj,j′

[(
b1

j − b1
j′

)2
+
(

b−1
j − b−1

j′

)2
]

. (4.11)

Depending on the regularization strength γ ≥ 0, the more the bags are similar —
larger vj,j′ — the more their relative estimate of b±j are close to each other. We
can restate the problem in matrix form by the Laplacian of the symmetric matrix
V ∈ Rn×n, which is the adjacency matrix of the graph induced by the similarity
vj,j′ . The Laplacian is defined as La = D − V, and D is a diagonal matrix such that
Dj = ∑n

j′ vj,j′ . For any vector u ∈ Rn, it holds that:

u>Lau = u>Du− u>Vu (4.12)

= ∑
j

Dju2
j −∑

j,j′
vj,j′ujuj′ (4.13)

=
1
2

(
∑

j
Dju2

j − 2 ∑
j,j′

vj,j′ujuj′ + ∑
j′

Dj′u2
j′

)
(4.14)

= ∑
j,j′

vj,j′
(
uj − uj′

)2 (4.15)

Expression 4.15 is obtained by applying the definition of Dj. This is a standard result
in Spectral Graph Theory [Von Luxburg, 2007]. We make use of this equivalence for
both b1

j and b−1
j , but separately, as the two vectors are subject to distinct constraints.

Thanks to the structure of matrix B±, we can define:

L .
= εI +

[
La | 0
0 | La

]
∈ R2n×2n , (4.16)

such that1

B̂± = argmin
X∈R2n×d

tr
(

B−Π>X
)>

Dw

(
B−Π>X

)
+ γ tr X>LX . (4.17)

Dw
.
= diag(w) is a user-fixed bias matrix with non-negative element on the diagonal

w. For example, we can re-weight the importance of the linear equations by the size
of the respective bags mj, by w = p. The second term has the form of a manifold
regularizer of Belkin et al. [2006], which allows us to reinterpret our assumption from
a geometrical standpoint: the bag label-wise feature averages ESj [x|y] live on a low-
dimensional manifold parameterized by the unidimensional similarity function vj,j′ .
The Laplacian matrix La is an empirical, discrete approximation of the manifold.

1with ε > 0 to assure non-singularity and numerical stability, see the proof of Theorem 35 in Ap-
pendix 4.11.2.
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Algorithm 5: Laplacian Mean Map (LMM)
Input: Sj, πj, pj, ∀j ∈ [n], ` is a-lol, γ > 0, Dw, L, λ > 0

B̂± ←
(
ΠDwΠ> + γL

)−1 ΠDwB
µ̂← 1

m ∑n
j=1 pj(πjb̂1

j − (1− πj)b̂−1
j )

θ̂← argminθ
1

2m ∑m
i=1 ∑y∈Y `(y〈θ, xi〉) + a〈θ, µ̂〉+ λ‖θ‖2

2

Output: θ̂

The size of the Laplacian is O(n2), which is small compared to O(m2) if there are
not many bags. This is in contrast with traditional approaches for semi-supervised
learning, where the Laplacian matrix is formed on top of similarity between exam-
ples, instead of bags [Belkin et al., 2006].

Problem 4.17 admits global optimum in closed form.

Theorem 35. The solution to Problem 4.17

argmin
X∈R2n×d

tr
(

B−Π>X
)>

Dw

(
B−Π>X

)
+ γ tr X>LX (4.18)

is

B̂± .
=
(

ΠDwΠ> + γL
)−1

ΠDwB (4.19)

Proof in 4.11.1. This result explains the role of the penalty εI in 4.16 as ΠDwΠ>

and L have respectively n- and (≥ 1)-dim null spaces, so the inversion may not
be possible. Even when this does not happen exactly, this may incur numerical
instabilities in computing the inverse. For domains where this risk exists, picking a
small ε > 0 solves the problem.

Let b̂y
j denote the rows of B̂±, the solution of Problem 4.17, in lieu of the true

by
j = ESj [x|y]. Those statistics are used to estimate the mean operator by Equation

4.6. We state the Laplacian Mean Map algorithm (LMM) in Algorithm 5, a second
example of our two-step estimation/minimization procedure.

4.6 Estimation: formal guarantees

We have shown how to estimate the sufficient statistic. Although, the set up of
Problem 4.17 is strongly dependent on our assumptions. It is therefore relevant to
study formal guarantees of our estimator. We compare µj

.
= πjb+

j − (1−πj)b−j to our

estimates µ̂j
.
= πjb̂+

j − (1−πj)b̂−j , ∀j ∈ [n], granted that µ = ∑j pjµj and µ̂ = ∑j pjµ̂j.

Theorem 36. Suppose that γ satisfies γ
√

2 ≤ (ε(2n)−1 +maxj 6=j′ vjj′)/ minj wj. Let M .
=
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[µ1|µ2|...|µn]> ∈ Rn×d, M̂ .
= [µ̂1|µ̂2|...|µ̂n]> ∈ Rn×d and:

ς(V, B±) .
=

(
ε

2n
+ max

j 6=j′
vjj′

)2

‖B±‖F .

The following holds:

‖M− M̂‖F ≤
√

n/2
minj w2

j
· ς(V, B±) . (4.20)

Proof in 4.11.2. The multiplicative factor to ς in 4.20 is roughly O(n5/2) when
there is no large discrepancy in the bias matrix Dw, so the upper bound is driven by
ς(., .) when there are not many bags. We study its variations when the “distinguish-
ability” between bags increases. This setting is interesting because in this case we
may kill two birds with one stone, with the estimation of M and the subsequent
learning problem potentially easier, in particular for linear separators. We consider
two examples for vjj′ , the first being the normalized association [Shi and Malik, 2000]:

vnc
jj′

.
=

1
2

(
assoc(Sj,Sj)

assoc(Sj,Sj ∪ Sj′)
+

assoc(Sj′ ,Sj′)

assoc(Sj′ ,Sj ∪ Sj′)

)
= Nassoc(Sj,Sj′) , (4.21)

vG,s
jj′

.
= exp(−‖bj − bj′‖2/s) , s > 0 . (4.22)

Here, assoc(Sj,Sj′)
.
= ∑x∈Sj,x′∈Sj′

‖x− x′‖2
2. To put these two similarity measures in

the context of Theorem 36, consider the setting where we can make assumption:

(A4.2) ∃κ > 0 such that ∀j, j′ ‖bj − bj′‖2
2 ≥ κ maxy,j ‖by

j ‖2
2.

This is a weak distinguish-ability property as if no such κ exists, then the centers
of distinct bags may just be confounded. Consider also the additional assumption
that:

(A4.3) ∃κ′ > 0 such that maxj d2
j ≤ κ′, ∀j ∈ [n], where dj

.
= maxxi ,x′i∈Sj

‖xi − xi′‖2

is a bag’s diameter.

In the following Lemma, the little-o notation is with respect to the “largest” un-
known in Equation 4.11, i.e. maxy,j ‖by

j ‖2.

Lemma 37. There exists ε∗ > 0 such that ∀ε ≤ ε∗, the following holds:

(i) ς(Vnc, B±) = o(1) under assumptions (A4.2 + A4.3);
(ii) ς(VG,s, B±) = o(1) under assumption (A4.2), ∀s > 0.
(iii) ς(VG,s, B±) converges faster than ς(Vnc, B±).

Proof in 4.11.3. Hence, provided a weak (A4.2) or stronger (A4.2+A4.3) distinguish-
ability assumption holds, the divergence between M and M̂ gets smaller with the
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increase of the norm of the unknowns by
j . The following Lemma shows that both

similarities also partially encode the hardness of solving the classification problem
with linear separators, so that the manifold regularizer “limits” the distortion of the
b̂y

j s between two bags that tend not to be linearly separable.

Lemma 38. Take vjj′ ∈ {vG,s
jj′ , vnc

jj′}. There exists 0 < κl < κn < 1 such that:

(i) if vjj′ > κn then Sj,Sj′ are not linearly separable;
(ii) if vjj′ < κl then Sj,Sj′ are linearly separable.

Proof in 4.11.4. This Lemma is an advocacy to fit s of vG,s
jj′ in a data dependent

way.
A question may be raised as to whether finite sample approximation results like

Theorem 36 can be proven for the Mean Map estimator. The following answers in
the negative.

Lemma 39. For any γ > 0, the Mean Map estimator (Equation 4.10) cannot guarantee:

‖µ̂− µ‖2

maxy,j ‖by
j ‖2
≤ 2− γ , (4.23)

even when (A4.2 + A4.3) hold.

Proof in 4.11.5. It is not hard to check that a randomized procedure that builds
µ̂

.
= yx for some random (x, y) ∈ S guarantees O(2+ γ) approximability when some

bags are close to the convex hull of S , for small γ > 0. In contrast, the Mean Map
estimation may be very poor in that respect.

We now move to consider the quality of the model. The following Theorem
shows a data dependent approximation bound that refines Theorem 26 under the
assumption that we use spls that satisfy an additional requirement.

Definition 40. Let φ′(x) be the derivative of φ(x) with regard to scalar x. We say that a
symmetric proper loss ` is proper scoring compliant (psc) when:

∀xi ∈ S , 〈θ?, xi〉 and 〈θ̂, xi〉 ∈ φ′([0, 1]), .

This condition always holds for logistic and Matsushita losses for which φ′([0, 1]) =
R. For other losses such as square loss for which φ′([0, 1]) = [−1, 1], shrinking the
observations in a ball of sufficiently small radius is sufficient to ensure this. Proof in
4.11.6.

Theorem 41. Let X .
= maxi ‖xi‖2. Let ` be spl and psc, and let φ′, φ′′ be first and second

derivative of φ. Let fk ∈ Rm denote the vector encoding the kth feature variable in S :
fki = xik, with k ∈ [d]. Let F denote the feature matrix with column-wise normalized feature
vectors:

f k
.
=

(
d

∑k′ ‖ fk′‖2
2

)(d−1)/(2d)

· fk . (4.24)
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Without loss of generality, we assume F>F positive definite. Call θ̂ and θ? the minimizer of
problem (ii) in Meta Algorithm 1 when, respectively, the empirical risk is computed with µ̂

from the estimator of (i) and µ = ES [yx]. We have that:

∥∥θ̂− θ?
∥∥2

2 ≤
1

λ + q
‖µ̂− µ‖2

2 , (4.25)

with:

q .
=

1
em
·

det
(

F>F
)

bφ φ′′
(

φ′−1
(

q
bφ λ

)) (> 0) , (4.26)

for some q in the interval [±(X + max{‖µ‖2, ‖µ̂‖2})].

4.7 Alternating Mean Map

We design a second algorithm for LLP called Alternating Mean Map (AMM). This
algorithms does not belong to the family of algorithms defined by our two-step pro-
cedure stated in Meta Algorithm 1. Instead, it follows the more conventional strategy
of coordinate descent for weakly supervised learning. Estimation of sufficient statis-
tic and model learning are interleaved. Once we learn a new model, it can be applied
to provide a better estimation of the mean operator. We do so by estimating the
unknown labels under the constraints given by the label proportions. LMM can be
used to initialize the alternating procedure. In the experiments of Section 4.9 we also
demonstrate that is the best choice for initialization.

Let us denote the set of labelings that are consistent with the proportions π as:

Σπ
.
=



σ ∈ Σm : ∑

i:xi∈Sj

σi = (2πj − 1)mj, ∀j ∈ [n]



 , (4.27)

and the (possibly biased) mean operator computed as µ(σ)
.
= (1/m)∑i σixi from

some σ ∈ Σπ . Notice that the true mean operator is µ = µ(σ) for at least one
σ ∈ Σπ . The objective function augmented with latent variables σ is the following:

1
2m

m

∑
i=1

∑
y∈Y

`(y〈θ, xi〉) + a〈θ, µ(σ)〉+ λ‖θ‖2
2 . (4.28)

This approach fits into the framework of Problem 2.27 for ERM under weak supervi-
sion. An important insight is that, by Factorization, σ affects the empirical risk only
through the value of 〈θ, µ(σ)〉. Therefore, for a fixed model θ, the optimum is found
by optimizing a linear function in the space of consistent labelings Σπ .

The Alternating Mean Map algorithm (Algorithm 6) starts with the output of
LMM and then optimizes it further over the set of consistent labelings. We give two
possible implementations, corresponding to either a min-max or a min-min learning
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Algorithm 6: Alternating Mean Map (AMMopt)
Input: LMM params, optimization strategy opt ∈ {min, max}, convergence
predicate pr

θ0 ← LMM(params)
repeat for t = 0, 1, . . .
(a) σt ← arg optσ∈Σπ 〈θ, µ(σ)〉
(b) θt ← arg minθ

1
2m ∑m

i=1 ∑y∈Y `(y〈θ, xi〉) + a〈θ, µ(σ)〉+ λ‖θ‖2
2

until predicate pr is true
Output: θ̂ (see text)

strategy. At each iteration, in Step (a) we first pick a consistent labeling in Σπ that is
the best (opt = min) or the worst (opt = max) for the current classifier, and then in
Step (b) we fit the classifier θ̂ on the given set of labels. We iterate until a convergence
predicate is met, which tests whether the empirical risk difference with the previous
iteration is small enough (AMMmin), or the number of iterations exceeds a user-
specified limit (AMMmax). The returned classifier θ̂ is the one with the smallest
empirical risk; in the case of AMMmin, the output is the last learned model since the
risk cannot increase.

Step (b) is a convex minimization with no technical difficulty. The label inference
Step (a) is combinatorial as we optimize a linear function for integer variables. Yet, it
can be solved in time almost linear in m, exploiting a trick similar to one elaborated
in Yu et al. [2013]. The insight is that the search for labels consistent with each label
proportion can be done via sorting. Moreover, we are optimizing a linear objective
that decomposes by bag. Therefore, bag by bag, we can sort observations by the
value of the inner product with the current model and label them as positive until
we match the label proportion for the bag. The next Lemma is formally proven in
4.11.7.

Lemma 42. The running time of Step (a) in AMM is O(m log m).

4.8 Generalization bounds

We now study generalization bounds for LLP. We are not aware of much prior work
on the topic. The only known generalization theory for LLP is in Yu et al. [2014b]
that formulate uniform convergence bounds but with a focus on coarser grained
problems — the estimation of bag label proportions – not directly the classifiers.

We obtain a first bound by applying Theorem 23 and utilizing Theorem 36 for
evaluating how generalization degrades when we estimate the mean operator with
LMM. The next Theorem holds for linear classifiers.

Theorem 43. Let ε = 0. Hold the same assumptions and notation from Theorems 23 and
36. Let ` be a-lol. Let Harm(m)

.
= n

∑j∈[n] 1/mj
be the harmonic mean of the bag sizes. For
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any δ > 0, with probability at least 1− δ:

RD,`(θ̂)− RD,`(θ
?) ≤

√
2 + 1
2

· XHL√
m

+ c(X, H) ·
√

1
m

log
(

2
δ

)

+ 2|a|H
(

X

√
d
m

log
(

2d
δ

)
+ X1/4

(
maxj 6=j′ vjj′

)2

minj w2
j

n3/2

√
1

Harm(m)

)
. (4.29)

Proof in 4.11.8. The Theorem highlights the effect of the mean operator as esti-
mated by LMM, which trades off number of bags and (the harmonic mean of) their
sizes. In particular, if we assume all bags with same size, we have ∀j, mj = m/n and
therefore:

n3/2

√
1
n ∑j∈[n]

n
m

= n3/2
√

n
m

=
n2
√

m
. (4.30)

Once again, the rate of convergence is O(
√

m). The bound can be improved as we
did above for Theorem 36 once we assume (A4.2) or (A4.3). The condition ε = 0 is
not a requirement but it simplifies the bound shape. The result confirms that novel
bounds can be derived by simply plugging in any known guarantee on the mean
operator estimators. We will show the same convenience in Chapter 5 analyzing the
case of noisy labels.

We formulate an additional, more generic bound in the following. This result fits
well with AMM and various algorithms that work by minimizing the bag empirical `-
risk Eσ∼Σπ ES [`(σh(x))]. This quantity is often part of the objective of LLP algorithms
inspired by EM. AMMmin and AMMmax respectively minimize a lower bound and an
upper bound of this risk. Here the model space H is generic and not restricted to
linear classifiers. The bound relies on a generalization of Rademacher complexity
that better suits the LLP setting.

Definition 44. The bag empirical Rademacher complexity of a hypothesis space H with
regard to sample S of size m and loss ` is:

Rb(` ◦ H ◦ S) .
= Eσ∼Σm

[
sup
h∈H

Eσ′∼Σπ

[
1
m

m

∑
i=1

σ `(σ′h(xi))

]]
. (4.31)

and the respective bag Rademacher complexity is Rb(` ◦ H)
.
= ES∼DRb(` ◦ H ◦ S).

Notice that the usual empirical Rademacher complexity (Definition 4) equals Rb

when |Σπ | = 1. It is also useful to define another type of complexity for the LLP,
related with the variation of the label proportions per bag. Let I/2

1 and I/2
2 be two

m-size i.i.d. samples of [2m] and S(I/2
1 ) and S(I/2

2 ) be the size-m subsets of S corre-
sponds to those indices. Take l = 1, 2 and any xi ∈ S . If i 6∈ I/2

l then πs
|l(xi) = πl

|l(xi)

is xi’s bag’s label proportion measured on S\S(I/2
l ). Else, πs

|2(xi) is its bag’s label

proportion measured on S(I/2
2 ) and πl

|1(xi) is its label, i.e. a bag’s label proportion
that would contain only xi. Finally, σ1(x) .

= 2 · 1{x ∈ S(I/2
1 )} − 1 ∈ Σ1.
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Definition 45. The label proportion complexity of H is:

L(H)
.
= ED2m EI /2

1 ,I /2
2

sup
h∈H

1
m

m

∑
i=1

[
σ1(x1)

(
πs
|2(xi)− πl

|1(xi)
)

h(xi)
]

. (4.32)

L(H) tends to be smaller as classifiers in H have small magnitude on bags whose
label proportion is close to 1/2. Despite similar shapes, Rb and L behave differently:
when bags are pure, πj ∈ {0, 1}, ∀j, L = 0. When bags are most impure, πj = 1/2, ∀j,
Rb = 0. As bags are impure, the bag empirical `-risk also tends to increase. We can
formulate a generalization bound for the bag empirical `-risk involving a balance of
the two complexity measures.

Theorem 46. Suppose ∃H ≥ 0, |h(x)| ≤ H. Then, for any spl ` and any 0 < δ ≤ 1, with
probability > 1− δ, the following bound holds over all h ∈ H:

RD,`(h)−Eσ∼Σπ ES [`(σh(x))] ≤ 2Rb(` ◦ H ◦ S)

+ L(H) + 4
(

2H
bφ

+ 1
)√

1
2m

log
2
δ

. (4.33)

Furthermore, under psc, we have for any spl `:

Rb(` ◦ H ◦ S) ≤ 2bφ EΣm sup
h∈H
{ES [σ(x)(π(x)− 1/2)h(x)]} . (4.34)

Proof in 4.11.9. This bound is the LLP equivalent to the first statement of Theorem
5, limiting the difference between `-risk and its empirical counterpart, which is here
averaged in the set of labels consistent with the given proportions.

4.9 Experiments

4.9.1 Algorithms

We compare LMM, AMM (` = logistic loss) to the original MM [Quadrianto et al.,
2009], InvCal [Rüping, 2010], conv-∝SVM and alter-∝SVM [Yu et al., 2013] with lin-
ear kernels. To obtain strong baselines, we test several additional initializations for
AMM: the edge mean map estimator (AMMEMM):

µ̂ =
1

m2

(
∑

i
yi

)(
∑

i
xi

)
, (4.35)

the constant estimator (AMM1):

µ̂ = 1 , (4.36)

and finally AMM10ran which runs 10 random initial models (‖θ0‖2 ≤ 1) and selects
the one with smallest risk. This procedure is akin to alter-∝SVM.
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Figure 4.1: Relative AUC (w.r.t. MM) as homogeneity assumption is violated (a).
Relative AUC (w.r.t. Oracle) vs entropy on heart for LMM(b), AMMmin(c). Relative
AUC vs n/m for AMMmin

G,s (d).

Matrix V (Equations 4.21, 4.22) used is indicated in subscript: LMM/AMMG,
LMM/AMMG,s, LMM/AMMnc respectively denote vG,s with s = 1, vG,s with s
learned on cross validation and vnc. We split the algorithms in two groups, one-shot
and iterative. The latter, including AMMand (conv/alter)-∝SVM, iteratively optimize
a cost over labelings. The former (LMM, InvCal) do not and are thus much faster.

The range of hyper-parameters for cross validation are λ = λ′m with λ′ ∈
{0} ∪ 10{0,1,2}, γ ∈ 10−{2,1,0}, σ ∈ 2−{2,1,0} for mean operator algorithms. We run
all experiments with Dw = I and ε = 0. For ∝SVM and InvCal, we used an im-
plementation provided by the authors of [Yu et al., 2013]. Since we test on similar
domains (6 are actually the same), hyper-parameters ranges for InvCal and ∝SVM
are taken from [Yu et al., 2013]. To avoid an additional source of complexity in the
analysis, we cross-validate all hyper-parameters using the knowledge of all labels
of the validation sets — information that generally would not be accessible in real
world applications. For all our experiments, the testing metric is the AUC.

4.9.2 Simulated domains

We generate 16 domains that gradually move away the bσ
j away from each other, thus

increasingly violating the homogeneity assumption (A4.0). The degree of violation
is measured as ‖B± − B±‖F, where B± is the “homogeneity assumption matrix”,
that replaces all bσ

j by bσ for σ ∈ {−1, 1}, see Equation 4.8. Figure 4.1 (a) displays
the AUC ratios LMM with respect to MM. It shows that LMM is all the better with
respect to MM as the homogeneity assumption is violated. Furthermore, learning
the width parameter s in LMM improves the results.

The MM algorithm was shown to learn a model with zero accuracy on a toy
domain crafted in Yu et al. [2013]. We reproduce the experiment and test all our
methods. In Table 4.2 we report performance of all measured in transductive setting,
i.e. on the same training set. Although none of the distances used in our experiments
in LMM leads reasonable accuracy in the toy dataset (not reported in the Table),
AMMmax initialized with any starting point learns in one step a model which perfectly



§4.9 Experiments 65

AMMmin AMMmax

EMM 100.00 100.00
MM 8.46 100.00
LMMG 8.46 100.00
LMMG,s 8.46 100.00
LMMnc 8.46 100.00
1 8.46 100.00
10ran 100.00 100.00

Table 4.2: AUC on the toy dataset of Yu et al. [2013]

classifies all the instances. We also notice that EMM returns an optimal classifier by
itself (not reported in Table 4.2).

4.9.3 UCI domains

We convert 10 small domains (m ≤ 1000) and 4 bigger ones (m > 8000) from UCI
[Bache and Lichman, 2013] into the LLP setting. We cast to one-against-all classifica-
tion when the problem is multi-class. On large domains, the bag assignment function
is inspired by [Yu et al., 2014b]: we craft bags according to a selected categorical fea-
ture, and then we remove that feature from the data. This conforms to the idea that
bag assignment is structured and non random in real-world problems. Most of our
small domains however do not have many features, so instead of clustering on one
feature and then discarding it, we run k-MEANS on the whole data to make the bags,
for k = n ∈ 2[5].

We perform 5-folds nested CV comparisons on the 10 domains = 50 AUC values
for each algorithm. Full experimental results are given in Appendix 7.9, including
runtime and details by domain. Table 4.3 synthesizes the results, splitting one-shot
and iterative algorithms:

(1) LMMG,s outperforms all one-shot algorithms.
(2) LMMG and LMMG,s are competitive with many iterative algorithms, but lose

against their AMM counterpart, which proves that additional optimization over la-
bels is beneficial.

(3) AMMG and AMMG,s are confirmed as the best variant of AMM, the first being
the best in this case.

(4) Surprisingly, all mean map algorithms, even one-shots, are clearly superior
to ∝SVMs. Further results reveal that ∝SVM performances are dampened by learn-
ing classifiers with the “inverted polarity” — i.e. flipping the sign of the classifier
improves its performances. See Appendix 4.12.2.

(5) Figure 4.1 (b, c) presents the AUC relative to the Oracle — which learns the
classifier knowing all labels and minimizing the logistic loss —, as a function of the
Gini entropy of bag assignment, gini(S) .

= 4Ej[πj(1−πj)]. For an entropy close to 1,
we were expecting a drop in performances. The unexpected is that on some domains,
large entropies (≥ .8) do not prevent AMMmin to compete with the Oracle. No such
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pattern clearly emerges for ∝SVM and AMMmax.

We now consider the 4 bigger datasets. We adopt a 1/5 hold-out method. Scal-
ability results display that every method using vnc and ∝SVM is not scalable to big
domains. Table 4.4 presents the results on the big domains, distinguishing the fea-
ture used for bag assignment. AMM10ran does not appear because of clearly inferior
performance. Big domains confirm the efficacy of LMM+AMM. No approach clearly
outperforms the rest, although LMMG,s is often the best one-shot and AMMmin

G and
AMMmin

G,s outperform all the methods several times.
Figure 4.1 (d) gives the AUC of AMMmin

G over the Oracle for all domains, as a
function of the “degree of supervision", n/m (=1 if the problem is fully supervised).
Noticeably, on 90% of the runs, AMMmin

G gets an AUC representing at least 70% of
the Oracle’s. Results on big domains can be remarkable: on the census domain with
bag assignment on race, 5 proportions are sufficient for an AUC 5 points below the
Oracle’s — which learns with 200K labels.

4.10 Discussion

We have shown methods that can learn with label proportions successfully. By suffi-
ciency we resort to standard learning procedures for binary classification. This is im-
plemented as the LMM algorithm which estimates the mean operator via a Laplacian-
based manifold regularizer relaxing the independence assumption of Quadrianto
et al. [2009]. We show that under a weak distinguish-ability assumption between
bags, our estimation of the mean operator is all the better as the maximal observation
norm increase. This, as we show, cannot hold for the MM algorithm of Quadrianto
et al. [2009]. Generalization bound are easily derived specializing the theory of Chap-
ter 3.

We have also provided an iterative algorithm, AMM, that takes as input the so-
lution of LMM and optimizes it further over the set of consistent labelings. We
ground the algorithm in a uniform convergence result involving a generalization of
Rademacher complexities for the LLP setting. The bound involves a bag surrogate
risk for which we show that AMM optimizes tractable bounds.

Experiments display results that are superior to the state of the art, with algo-
rithms that scale to big domains at affordable computational costs. Performances
sometimes compete with the Oracle’s — that learns knowing all labels —, even on
big domains. On one side, such experimental finding are encouraging for Machine
Learning applications where the given supervision is only coarse-grain. On the other
side, we uncover severe implications on the reliability of privacy preserving aggre-
gation techniques with simple group statistics like proportions, still common for the
public release of summaries on sensitive data. Future work shall study the extent
to which LLP methods may threaten anonymity of people and sensitivity of their
attributes when polls-like results are released on the Internet and when additional
individual information on those individuals is available.
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algorithm
m

ushroom
:8124×

108
adult:48842×

89
m

arketing:45211×
41

census:299285×
381

I(6)
II(7)

III(10)
IV

(5)
V

(16)
V

I(42)
V

(4)
V

II(4)
V

III(12)
IV

(5)
V

III(9)
V

I(42)

EM
M

55.61
59.80

76.68
43.91

47.50
66.61

63.49
54.50

44.31
56.05

56.25
57.87

M
M

51.99
98.79

5.02
80.93

76.65
74.01

54.64
50.71

49.70
75.21

90.37
75.52

LM
M

G
73.92

98.57
14.70

81.79
78.40

78.78
54.66

51.00
51.93

75.80
71.75

76.31
LM

M
G

,s
94.91

98.24
89.43

84.89
78.94

80.12
49.27

51.00
65.81

84.88
60.71

69.74

AMMmin

A
M

M
EM

M
85.12

99.45
69.43

49.97
56.98

70.19
61.39

55.73
43.10

87.86
87.71

40.80
A

M
M

M
M

89.81
99.01

15.74
83.73

77.39
80.67

52.85
75.27

58.19
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68.36
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M

M
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M
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66.62

89.09
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AMMmax
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M

M
EM

M
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3.32
26.67

54.46
69.63

56.62
51.48

55.63
57.48

71.20
77.14

66.71
A

M
M

M
M
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99.70
82.57
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48.46
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99.30
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47.27
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A
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1.29
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94.37

94.45

Table
4.4:

A
U

C
on

big
dom

ains
(nam

e:
#instances×

#features).
I=cap-shape,

II=habitat,
III=cap-color,

IV
=race,

V
=education,

V
I=country,V

II=poutcom
e,V

III=job
(num

ber
of

bags);for
each

feature,the
bestresultover

one-shot,and
over

iterative
algorithm

s
is

bold
faced.



§4.11 Appendix: proofs 69

4.11 Appendix: proofs

4.11.1 Proof of Lemma 35

Using the fact that Dw and L are symmetric, we have:

∂`(L, X)

∂X
(4.37)

= −2
∂

∂X
tr B>DwΠ>X +

∂

∂X
tr X>ΠDwΠ>X + γ

∂

∂X
tr X>LX (4.38)

= −2ΠDwB + 2ΠDwΠ>X + 2γLX = 0 , (4.39)

out of which B̂± follows.

4.11.2 Proof of Theorem 36

We let Πo
.
= [diag(π)|diag(π − 1)]>N an orthonormal system (njj = (π2

j + (1 −
πj)

2)−1/2, ∀j ∈ [n] and 0 otherwise). Let KΠo be the n-dim subspace of Rd generated
by Πo. The proof of Theorem 36 exploits the following Lemma, which assumes that
ε is any > 0 real for L in 4.16 to be � 0. When ε = 0, the result of Theorem 36 still
holds but follows a different proof.

Lemma 47. Let A .
= ΠDwΠ> and L defined as in 4.16. Denote for short:

U .
=
(

L−1A + γ−1 I
)−1

. (4.40)

Suppose there exists ξ > 0 such that for any x ∈ R2n, the projection of Ux in KΠo , xU,o,
satisfies:

‖xU,o‖2 ≤ ξ‖x‖2 . (4.41)

Then:
∥∥M− M̂

∥∥
F ≤ γξ ‖B±‖F . (4.42)

Proof Combining Lemma 35 and Equation 4.8, we get

B± − B̂± = −
(
(A + γL)−1 A− I

)
B± (4.43)

=
(
(γL)−1A + I

)−1
B± . (4.44)

Define the following permutation matrix:

C .
=

[
0 | I
I | 0

]
∈ R2n×2n . (4.45)

A .
= ΠDwΠ> is not invertible but diagonalizable. Its (orthonormal) eigenvectors can
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be partitioned in two matrices Po and P such that:

Po
.
= [diag(π − 1)|diag(π)]>N = CΠo ∈ R2n×n (eigenvalues 0) , (4.46)

P .
= ΠN ∈ R2n×n (eigenvalues wj(π

2
j + (1− πj)

2), ∀j) . (4.47)

We have:

M− M̂ = P>o CB± − P>o CB̂± (4.48)

= P>o C
(
(γL)−1A + I

)−1
B± (4.49)

= Π>o
(
(γL)−1A + I

)−1
B± (4.50)

= γΠ>o
(

L−1A + γ−1 I
)−1

B± . (4.51)

Equation 4.50 follows from the fact that C is idempotent. Plugging Frobenius norm
in 4.51, we obtain:

∥∥M− M̂
∥∥2

F = γ2
∥∥∥∥Π>o

(
L−1A + γ−1 I

)−1
B±
∥∥∥∥

2

F
(4.52)

= γ2
d

∑
k=1

∥∥∥∥Π>o
(

L−1A + γ−1 I
)−1

b±k

∥∥∥∥
2

2
(4.53)

≤ γ2ξ2
d

∑
k=1

∥∥b±k
∥∥2

2 (4.54)

= γ2ξ2 ‖B±‖2
F , (4.55)

which yields 4.42. In 4.54, b±k denotes column k in B±. Inequality 4.54 makes use of
assumption 4.41.

To ensure ‖xU,o‖2 ≤ ξ‖x‖2, it is sufficient that ‖Ux‖2 ≤ ξ‖x‖2, and since ‖Ux‖2 ≤
‖U‖F‖x‖2, it is sufficient to show that:

∥∥∥U−1
ξ

∥∥∥
2

F
≤ 1 , (4.56)

with Uξ
.
= L−1

ξ A + ξγ−1 I, for relevant choices of ξ. We have let Lξ
.
= (1/ξ)L. Let

0 ≤ λ1(.) ≤ ... ≤ λ2n(.) denote the ordered eigenvalues of a positive-semidefinite
matrix in R2n×2n. It follows that, since L is symmetric positive definite, we have:

λj(L−1
ξ A) ≥ λj(A)

λ2n(Lξ)
(≥ 0) , ∀j ∈ [2n] . (4.57)

We have used Equation 4.46. Weyl’s Theorem [Horn and Johnson, 2012, Chapter 4]
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then brings:

λj(U−1
ξ ) ≤ λ2n(Lξ)

λj(A) + ξγ−1λ2n(Lξ)
≤
{

ξ−1γ if j ∈ [n]
λ2n(Lξ )

λj(A)
otherwise

. (4.58)

Gershgorin’s Theorem [Horn and Johnson, 2012, Chapter 6] brings λ2n ≤ (1/ξ)(ε +
maxj ∑j′ |ljj′ |), and furthermore the eigenvalues of A satisfy λj ≥ wj/2, ∀j ≥ n + 1.
We thus have:

∥∥∥U−1
ξ

∥∥∥
2

F
≤ nγ2

ξ2 +
4n
(

ε + maxj ∑j′ |ljj′ |
)2

ξ2 minj w2
j

. (4.59)

In 4.58 and 4.59, we have used the eigenvalues of A given in Equations 4.46 and 4.47.
Assuming:

γ ≤ ξ√
2n

, (4.60)

a sufficient condition for the right-hand side of 4.59 to be ≤ 1 is that:

ξ ≥
ε + maxj ∑j′ |ljj′ |

2
√

n minj wj
. (4.61)

To finish up the proof, recall that L = D−V with djj
.
= ∑j,j′ vjj′ and the coordinates

vjj′ ≥ 0. Hence,

∑
j′
|ljj′ | = 2 ∑

j 6=j′
vjj′ (4.62)

≤ 2n max
j 6=j′

vjj′ , ∀j ∈ [n] . (4.63)

The proof is concluded by plugging this upper bound in 4.61 to choose ξ, then taking
the maximal value for γ in 4.60 and finally solving the upper bound in 4.42.

4.11.3 Proof of Lemma 37

We first consider the normalized association criterion in 4.21:

vN
jj′

.
=

1
2

(
assoc(Sj,Sj)

assoc(Sj,Sj ∪ Sj′)
+

assoc(Sj′ ,Sj′)

assoc(Sj′ ,Sj ∪ Sj′)

)
, (4.64)

assoc(Sj,Sj′)
.
= ∑

x∈Sj,x′∈Sj′

‖x− x′‖2
2 . (4.65)
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Remark that:

‖bj − bj′‖2
2 =

∥∥∥∥∥∥
1

mj
∑

xi∈Sj

xi −
1

mj′
∑

xi′∈Sj′

xi′

∥∥∥∥∥∥

2

2

(4.66)

=
1

m2
j

∥∥∥∥∥∥ ∑
xi∈Sj

xi

∥∥∥∥∥∥

2

2

+
1

m2
j′

∥∥∥∥∥∥ ∑
xi′∈Sj′

xi′

∥∥∥∥∥∥

2

2

− 2
mjmj′


 ∑

xi∈Sj

xi



>
 ∑

xi′∈Sj′

xi′




=
1

m2
j

∥∥∥∥∥∥ ∑
xi∈Sj

xi

∥∥∥∥∥∥

2

2

+
1

m2
j′

∥∥∥∥∥∥ ∑
xi′∈Sj′

xi′

∥∥∥∥∥∥

2

2

− 2
mjmj′

∑
xi∈Sj,xi′∈Sj′

x>i xi′ (4.67)

≤ 1
mj

∑
xi∈Sj

‖xi‖2
2 +

1
mj′

∑
xi′∈Sj′

‖xi′‖2
2 −

2
mjmj′

∑
xi∈Sj,xi′∈Sj′

x>i xi′ (4.68)

=
1

mjmj′
∑

xi∈Sj,xi′∈Sj′

‖xi − xi′‖2
2 (4.69)

+
mj′ − 1
mjmj′

∑
xi∈Sj

‖xi‖2
2 +

mj − 1
mjmj′

∑
xi′∈Sj′

‖xi′‖2
2 −

1
mjmj′

∑
xi∈Sj,xi′∈Sj′

x>i xi′

︸ ︷︷ ︸
.
=a

≤ 2
mjmj′

∑
xi∈Sj,xi′∈Sj′

‖xi − xi′‖2
2 (4.70)

=
2

mjmj′
assoc(Sj,Sj′) . (4.71)

Equation 4.68 exploits the fact that
(

∑n
j=1 aj

)2
≤ n

(
∑n

j=1 a2
j

)
and Equation 4.70 is

due to a ≤ (mjmj′)
−1 ∑xi∈Sj,xi′∈Sj′

‖xi − xi′‖2
2. We thus have:

assoc(Sj,Sj)

assoc(Sj,Sj ∪ Sj′)
=

assoc(Sj,Sj)

assoc(Sj,Sj) + assoc(Sj,Sj′)
(4.72)

≤ assoc(Sj,Sj)

assoc(Sj,Sj) +
mjmj′

2 ‖bj − bj′‖2
2

(4.73)

≤ κ′mj

κ′mj +
mjmj′

2 ‖bj − bj′‖2
2

(4.74)

=
1

1 +
mj′
2κ′ ‖bj − bj′‖2

2

. (4.75)
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Equation 4.73 uses 4.71 and 4.74 uses assumption (A4.3). Equation 4.74 also holds
when permuting j and j′, so we get:

ς(VNC, B±) ≤ max
j 6=j′

(
ε

2n
+

1
1 + mj

2κ′ ‖bj − bj′‖2
2

+
1

1 +
mj′
2κ′ ‖bj − bj′‖2

2

)2

‖B±‖F

≤
(

ε

2n
+

1

1 + minj mj
2κ′ minj,j′ ‖bj − bj′‖2

2

)2

‖B±‖F (4.76)

≤

 ε2

2n2 + 2

(
1

1 + minj mj
2κ′ minj,j′ ‖bj − bj′‖2

2

)2

 ‖B±‖F (4.77)

≤ ε2

2n2 d max
σ,j
‖bσ

j ‖2 +
4κ′d maxσ,j ‖bσ

j ‖2

min2
j,j′ ‖bj − bj′‖2

2
(4.78)

≤ ε2

2n2 d max
σ,j
‖bσ

j ‖2 +
4κ′d

κ2 maxσ,j ‖bσ
j ‖2

(4.79)

= f NC
(

max
σ,j
‖bσ

j ‖2

)
(4.80)

= o(1) , (4.81)

where the last inequality uses assumption (A4.2), and 4.77 uses the property that
(a + b)2 ≤ 2a2 + 2b2. We have let:

f NC(x) .
=

ε2

2n2 dx +
4κ′d
κx

, (4.82)

which is indeed o(1) if ε = o(n2/
√

x). This proves the Lemma for ς(VNC, B±). The
case of ς(VG,s, B±) is easier, as:

exp
(
−‖bj − bj′‖2

s

)
≤ exp

(
−minj′′,j′′′ ‖bj′′ − bj′′′‖2

s

)
(4.83)

≤ exp
(
−κ

s
max

σ,j
‖bσ

j ‖2

)
, (4.84)
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from assumption (A4.2) alone, which gives:

ς(VG,s, B±) ≤ ‖B±‖F

(
ε

2n
+ exp

(
−κ

s
max

σ,j
‖bσ

j ‖2

))2

(4.85)

≤ ‖B±‖F

(
ε2

2n2 + 2 exp
(
−2κ

s
max

σ,j
‖bσ

j ‖2

))
(4.86)

≤ d max
σ,j
‖bσ

j ‖2

(
ε2

2n2 + 2 exp
(
−2κ

s
max

σ,j
‖bσ

j ‖2

))
(4.87)

= f G
(

max
σ,j
‖bσ

j ‖2

)
(4.88)

= o(1) , (4.89)

as claimed. We have let f G(x) .
= ε2

2n2 dx + dx exp(−2κx/s), which is indeed o(1) if
ε = o(n2/

√
x).

For the last statement, remark that we shall have in general f G(x) ≤ f NC(x) and
even f G(x) = o( f NC(x)) if ε = 0, so we may expect better convergence in the case of
VG,s as maxσ,j ‖bσ

j ‖2 grows.

4.11.4 Proof of Lemma 38

We first restate the Lemma in a more explicit way, that shall provide explicit values
for κl and κn.

Lemma 48. There exist κjj′ and sjj′ depending on dj, dj′ , and κ′jj′ > 1 depending on mj, mj′ ,
such that:

• If v
G,sjj′
jj′ > exp(−1/4) then Sj,Sj′ are not linearly separable;

• If v
G,sjj′
jj′ < exp(−64) then Sj,Sj′ are linearly separable;

• If vNC
jj′ > κjj′ then Sj,Sj′ are not linearly separable;

• If vNC
jj′ < κjj′/κ′jj′ then Sj,Sj′ are linearly separable.

Proof We first consider the normalized association criterion in 4.21, and we prove
the Lemma for the following expressions of κjj′ and κ′jj′ :

κjj′
.
=

16

2 +
d2

jj′
2d2

j′

+
16

2 +
d2

jj′
2d2

j

, (4.90)

κ′jj′
.
= 512 max{mj, mj′} , (4.91)

with djj′
.
= max{dj, dj′} and dj

.
= maxx,x′∈Sj ‖x− x′‖2, ∀j 6= j′ ∈ [n]. For any bag Sj,

we let (b?
j , rj)

.
= MEB(Sj) denote the minimum enclosing ball (MEB) for bag Sj and
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distance L2, that is, rj is the smallest unique real such that:

∃! b?
j : d(x, b?

j )
.
= ‖x− b?

j ‖2 ≤ rj, ∀x ∈ Sj . (4.92)

We have let d(x, b?
j )

.
= ‖x− b?

j ‖2. We are going to prove a first result involving the
MEBs of Sj and Sj′ , and then will translate the result to the Lemma’s statement.
The following properties follows from standard properties of MEBs and the fact that
d(., .) is a distance (they hold for any j 6= j′):

(a) d(x, x′) ≤ 2rj , ∀x, x′ ∈ Sj;

(b) If bags Sj and Sj′ are linearly separable, then ∀x ∈ co(Sj), ∃x′ ∈ Sj′ such that
d(x, x′) ≥ max{rj, rj′}; here, “co” denotes the convex closure;

(c) If bags Sj and Sj′ are linearly separable, then d(bj, bj′) ≥ max{rj, rj′}, where bj
and bj′ are the bags average;

(d) ∀x ∈ Sj, ∃x′ ∈ Sj s.t. d(x, x′) ≥ rj;

(e) d(x, x′) ≤ 2 max{rj, rj′}+ d(b?
j , b?

j′), ∀x ∈ co(Sj), ∀x′ ∈ co(Sj′).

Let us define:

assoc(Sj,Sj′)
.
= ∑

x∈Sj,x′∈Sj′

d2(x, x′) . (4.93)

We remark that, assuming that each bag contains at least two elements without loss
of generality:

vNC
jj′ =

1
2


 1

1 +
assoc(Bj,Bj′ )
assoc(Bj,Bj)

+
1

1 +
assoc(Bj,Bj′ )
assoc(Bj′ ,Bj′ )


 . (4.94)

We have assoc(Sj,Sj) ≤ 4mjr2
j and assoc(Sj′ ,Sj′) ≤ 4mj′r2

j′ (because of (a)), and also
assoc(Sj,Sj′) ≥ max{mj, mj′}max{r2

j , r2
j′} when Sj and Sj′ are linearly separable

(because of (b)), which yields in this case:

vNC
jj′ ≤

1

2 +
max{mj,mj′}max{r2

j ,r2
j′}

2mjr2
j

+
1

2 +
max{mj,mj′}max{r2

j ,r2
j′}

2mj′ r
2
j′

(4.95)

≤ 1

2 +
max{r2

j ,r2
j′}

2r2
j

+
1

2 +
max{r2

j ,r2
j′}

2r2
j′

. (4.96)

Let us name κ◦jj′ the right-hand side of 4.96. It follows that when vNC
jj′ > κ◦jj′ , Sj and

Sj′ are not linearly separable.
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On the other hand, we have assoc(Sj,Sj) ≥ mjr2
j and assoc(Sj′ ,Sj′) ≥ mj′r2

j′

(because of (d)), and also:

assoc(Sj,Sj′) ≤ mjmj′(2 max{rj, rj′}+ d(b?
j , b?

j′))
2 (4.97)

≤ mjmj′(4 max{r2
j , r2

j′}+ 2d2(b?
j , b?

j′)) , (4.98)

because of (e) and the fact that (a + b)2 ≤ 2a2 + 2b2. It follows that ∀j 6= j′:

vNC
jj′ ≥

1

2 +
2mj′ (4 max{r2

j ,r2
j′}+2d2(b?

j ,b?
j′ ))

r2
j

+
1

2 +
2mj(4 max{r2

j ,r2
j′}+2d2(b?

j ,b?
j′ ))

r2
j′

. (4.99)

For any j 6= j′, when d2(b?
j , b?

j′) ≤ 4 max{r2
j , r2

j′}, then we have from 4.99:

vNC
jj′ ≥

1

2 +
16mj′ max{r2

j ,r2
j′}

r2
j

+
1

2 +
16mj max{r2

j ,r2
j′}

r2
j′

(4.100)

> κ◦jj′/(32 max{mj, mj′}) . (4.101)

Hence, vNC
jj′ ≤ κ◦jj′/(32 max{mj, mj′}) implies d(b?

j , b?
j′) > 2 max{rj, rj′}, implying

d(b?
j , b?

j′) > rj + rj′ , which is a sufficient condition for the linear separability of Sj
and Sj′ .

We can relate the linear separability of Sj and Sj′ to the value of vNC
jj′ with respect

to κ◦jj′ defined in 4.96. To remove the dependence in the MEB parameters and obtain
the statement of the Lemma, we just have to remark that d2

j /4 ≤ r2
j ≤ 4d2

j , ∀j ∈ [n],
which yields κjj′/16 ≤ κ◦jj′ ≤ κjj′ . Therefore, when vNC

jj′ > κjj′ , it follows that
vNC

jj′ > κ◦jj′ and Sj and Sj′ are not linearly separable. On the other hand, when
vNC

jj′ ≤ κjj′/(16× 32 max{mj, mj′}) = κjj′/κ′jj′ , then vNC
jj′ ≤ κ◦jj′/(32 max{mj, mj′}) and

the bags Sj and Sj′ are linearly separable. This achieves the proof of Lemma 38 for
the normalized association criterion in 4.21.

The proof for vG,s
jj′ is shorter, and we prove it for:

sj,j′ = max{dj, dj′} . (4.102)

We have (1/2)max{dj, dj′} ≤ max{rj, rj′} ≤ 2 max{dj, dj′}. Hence, because of (c)
above, if Sj and Sj′ are linearly separable, then vG,s

jj′ ≤ 1/e1/4; so, when vG,s
jj′ >

1/e1/4, the two bags are not linearly separable. On the other hand, if d(b?
j , b?

j′) ≤
2 max{rj, rj′}, then because of (e) above d(bj, bj′) ≤ 4 max{rj, rj′} ≤ 8 max{dj, dj′},
and so vG,s

jj′ ≥ 1/e64. This implies that if vG,s
jj′ < 1/e64, then d(b?

j , b?
j′) > 2 max{rj, rj′} ≥

rj + rj′ , and thus the two bags are linearly separable, as claimed. This achieves the
proof of Lemma 48.
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This achieves the proof of Lemma 38.

4.11.5 Proof of lemma 39

Let x > 0, ε ∈ (0, 1), p ∈ (0, 1), p 6= 1/2. We create a dataset from four observations,
{(x1 = 0, 1), (x2 = 0,−1), (x3 = x, 1), (x4 = x,−1)}. There are two bags, S1 takes
1− ε of x2 and ε of x1. S2 takes ε of x4 and 1− ε of x3. The label-wise estimators b̂σ

of Quadrianto et al. [2009] are solution of:

[
b̂+

b̂−

]
=

([
1− ε ε

ε 1− ε

]> [
1− ε ε

ε 1− ε

])−1 [
1− ε ε

ε 1− ε

]> [
x
0

]

(4.103)

=
1

1− 2ε

[
(1− ε)x

εx

]
(4.104)

On the other hand, the true quantities are:

[
b+

b−

]
=

[
(1− ε)x

εx

]
. (4.105)

We now mix classes in S and pick bag proportions q .
= PS [x ∈ S1] and 1− q =

PS [x ∈ S2]. We have the class proportions defined by PS [y = +1] = εq + (1− ε)(1−
q) .

= p. Then:

‖µ̂− µ‖2 =

∥∥∥∥p(1− ε)

(
1

1− 2ε
− 1
)

x− (1− p)ε
(

1
1− 2ε

− 1
)

x
∥∥∥∥

2
(4.106)

=
2ε|p− ε|

1− 2ε
x (4.107)

= 2ε(1− q)x . (4.108)

Furthermore, maxi
∥∥bσ

i

∥∥
2 = x. We get:

‖µ̂− µ‖2

maxi
∥∥bσ

i

∥∥
2

= 2ε(1− q) . (4.109)

Picking ε and (1− q) both >
√

1− (γ/2) is sufficient to have Equation 4.109 > 2− γ

for any γ > 0. Remark that both assumptions (A4.2) and (A4.3) hold for any κ < 1
and any κ′ > 0.
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4.11.6 Proof of Theorem 41

Let us start by recalling some notation.

RSX ,`(θ, µ) =
1

2m

(
∑

i∈[m]
∑
σ

`(σ〈θ, xi〉)
)
+ a〈θ, µ〉 . (4.110)

Also define the regularized loss:

RSX ,`(θ, µ, λ)
.
= RSX ,`(θ, µ) + λ‖θ‖2

2 . (4.111)

The proof builds upon Lemma 26, which bound is refined for spls. First, we
prove a helper Lemma for Lipschitz losses.

Lemma 49. Let ` be L-Lipschitz and a-lol. Fix λ > 0, and let X .
= maxi ‖xi‖2. Let

θ′ .
= argminθ RSX ,`(θ, µ′, λ) where µ′ is any vector in Rd. Then:

‖θ′‖2 ≤
LX + |a|‖µ′‖2

λ
. (4.112)

Proof Let us define a shrinking of the optimal solution θ′, θα
.
= αθ′ for α ∈ (0, 1).

We have:

RSX ,`(θα, µ′, λ) =
1

2m

(
∑

i
∑
σ

`(σ〈θα, xi〉)
)
+ a〈θα, µ′〉+ λ‖θα‖2

2 (4.113)

=
1

2m

(
∑

i
∑
σ

`(σα〈θ′, xi〉)
)
+ aα〈θ′, µ′〉+ λα2‖θ′‖2

2 (4.114)

≤ 1
2m

(
∑

i
∑
σ

`(σ〈θ′, xi〉) + L
∣∣σα〈θ′, xi〉 − σ〈θ′, xi〉

∣∣
)

+ aα〈θ′, µ′〉+ λα2‖θ′‖2
2 (4.115)

=
1

2m

(
∑

i
∑
σ

`(σ〈θ′, xi〉)
)
+

L(1− α)

m ∑
i
|〈θ′, xi〉|

+ aα〈θ′, µ′〉+ λα2‖θ′‖2
2 , (4.116)

where 4.115 holds because ` is L-Lipschitz. To have Equation 4.116 smaller than
RSX ,`(θ

′, µ′, λ), we need equivalently:

L(1− α)

m ∑
i
|〈θ′, xi〉|+ aα〈θ′, µ′〉+ λα2‖θ′‖2

2 ≤ a〈θ′, µ′〉+ λ‖θ′‖2
2 , (4.117)

that is:

L(1− α)

m ∑
i
|〈θ′, xi〉| − a(1− α)〈θ′, µ′〉 ≤ λ(1− α2)‖θ′‖2

2 , (4.118)



§4.11 Appendix: proofs 79

and to find an α ∈ (0, 1) such that this holds, because of Cauchy-Schwartz inequality,
it is sufficient that:

(1− α)(LX− aµ′) ≤ (1− α)(LX + |a|µ′) ≤ λ(1− α2)‖θ′‖2 , (4.119)

that is

‖θ′‖2 ≥
LX + |a|‖µ′‖2

λ(1 + α)
. (4.120)

Finally, whenever ‖θ′‖2 > (LX + |a|‖µ′‖2)/λ, there is a shrinking of the optimal so-
lution of Equation 4.110 that further decreases the empirical risk, thus contradicting
its optimality. This ends the proof of Lemma 49.

We now combine Theorem 26 and Lemma 49. Recall that we assume spls. Since
they are differentiable by definition, we can verify that they are also Lipschitz by
taking the first derivative. We have:

`′(x) = − 1
bφ

(φ?)′(−x) = − 1
bφ

(φ′)−1(−x) ∈ [−1/bφ, 0] , (4.121)

for any x ∈ φ′([0, 1]) and thus ` is 1/bφ-Lipschitz. Also, we know that a = − 1
2bφ

with
bφ > 0 for spls (Table 3.1). Therefore, Lemma 49 tells us that:

‖θ′‖2 ≤
X + ‖µ′‖2

bφλ
. (4.122)

We can obtain an explicit value instead of the generic γ denoting strong convexity in
Theorem 26. Let us compute the second derivate for any spl. By the rule of derivate
of an inverse function, we differentiate Equation 4.121:

`′′(x) = − 1
bφ

(
(φ′)−1

)′
(−x) (4.123)

= − 1
bφ φ′′ ((φ′)−1(−x))

(4.124)

Recall Equation 3.100 in the proof of Theorem 26. We compute a lower bound of the
second derivative `′′ by bounding its argument for any α ∈ [0, 1]:

∣∣±〈αθ? + (1− α)θ̂, xi〉
∣∣ ≤ (α‖θ?‖2 + (1− α)‖θ̂‖2)X (4.125)

≤ X + α‖µ‖2 + (1− α)‖µ̂‖2

bφλ
(4.126)

≤ X + max{‖µ‖2, ‖µ̂‖2}
bφλ

, (4.127)

where Inequality 4.125 follows from Cauchy-Schwartz inequality. 4.126 uses Equa-
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tion 4.122. µ and µ̂ are the parameters of RSX ,`(·, µ, λ) and RSX ,`(·, µ̂, λ) in Lemma 26,
and θ̂ and θ? the respective minimizers. This achieves the proof of Theorem 41 for
the interval:

[±(X + max{‖µ‖2, ‖µ̂‖2})] . (4.128)

4.11.7 Proof of Lemma 42

We elaborate the proof for optimization strategy opt = min. The case opt = max
flips the choice of the label in Step 1. For simplicity, let us define, as in the last proof:

RSX ,`(θ, µ) =
1

2m

(
∑

i∈[m]
∑
σ

`(σ〈θ, xi〉)
)
+ a〈θ, µ〉 . (4.129)

To minimize RSX ,`(θt, µ(σ)) over σ ∈ Σπ , we just have to find:

σ∗ ∈ argmax
σ∈Σπ

〈
θ, ∑

i
σixi

〉
, (4.130)

and we can do that bag by bag. Algorithm 7 presents the labeling (notation (m)
.
=

{1, 2, ..., m− 1}). Remark that the time complexity for one bag is O(mj log mj) due to
the ordering (Step 1), so the overall complexity is indeed O(m maxi log mi).

Lemma 50. Let σ∗
.
= {σ∗1 , σ∗2 , ..., σ∗m} be the set of labels obtained after running LA(θ,Sj, m+

j )
for j = 1, 2, ..., n. Then σ∗ ∈ argmaxσ∈Σπ

θ> ∑i σixi.

Proof The total edge, 〈θ, ∑i σixi〉 (for any σ ∈ Σπ), can be summable bag-wise with
regard to the coordinates of σ. Consider the optimal set:

{σ?}B .
= argmax

σ∈{−1,1}m′ : 〈1,σ〉=2m+−m′

〈
θ, ∑xi∈B σixi

〉
,

for some bag B = {xi, i = 1, 2, ..., m′}, with constraint m+ ∈ [m′]. This set contains the
label assignment σ∗ returned by Algorithm 7 LA(θ,B, m+), a property that follows
from two simple observations:

1. Consider any observation xi of bag B; for any optimal labeling σ? of B, let
m′+ .

= m+ − I(σ?
i = 1). Define the set {σ′?}i of optimal labelings of B\{xi}

with constraint m′+ .
= m+ − I(σ?

i = 1). Then this set coincides with the set
created by taking the elements of {σ?}B to which we drop coordinate i. This
follows from the per-observation summability of the total edge with regard to
labels.

2. Assume m+ ∈ (m′). ∀i∗ ∈ argmaxi |〈θ, xi〉|, there exists an optimal assignment
σ? such that σ?

i∗ = sign〈θ, xi∗〉. Otherwise, starting from any optimal assign-
ment σ?, we can flip the label of xi∗ and the label of any other xi for which
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Algorithm 7: Label Assignation (LA)

Input: θ ∈ Rd, a bag B = {xi ∈ Rd, i = 1, 2, ..., m}, bag size m+ ∈ [m]
If B = ∅ then stop
Else if m+ 6∈ (m)

yi ← I(m+ = m)− I(m+ = 0), ∀i = 1, 2, ..., m
Else

1 i∗ ← argmaxi |〈θ, xi〉|
2 yi∗ ← sign〈θ, xi∗〉
3 LA(θ,B\{xi∗}, m+ − I(yi∗ = 1))

σ?
i 6= σ?

i∗ , and get a label assignment that satisfies constraint m+ and cannot be
worse than σ?, and is thus optimal, a contradiction.

Hence, LA(θ,B, m+) picks at each iteration a label that matches one in a subset of op-
timal labelings, and the recursive call preserves the subset of optimal labelings. Since
when m+ 6∈ (m) the solution returned by LA(θ,B, m+) is obviously optimal, we end
up when the current B is empty with σ∗ ∈ argmaxσ∈Σπ

〈θ, ∑i σixi〉, as claimed.

4.11.8 Proof of Theorem 43

We have to combine Theorems 23 (first statement) and 36. The link between the
two is the following bound on the norm discrepancy between the population mean
operator and its estimator by LMM:

‖µD − µ̂S‖2 = ‖µD + µS − µS − µ̂S‖2 (4.131)

≤ ‖µD − µS‖2 + ‖µS − µ̂S‖2 . (4.132)

Here we are interested in bounding the latter norm in Step 4.132, since we can treat
the former one as done in the proof of Theorem 23. Let us denote η

.
= µS − µ̂S ∈ Rd

and similarly ηj, η
y
j ∈ Rd the difference of bag-wise and bag-wise, label-wise mean

operators respectively. By Jensen’s inequality and the fact that p(j) ≤ 1 and πj ≤
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1, ∀j we have:

‖η‖2
2 =

∥∥∥∥∥∥ ∑
j∈[n]

p(j)ηj

∥∥∥∥∥∥

2

2

(4.133)

=

∥∥∥∥∥∥ ∑
j∈[n]

p(j)
(

πjη
+
j − (1− πj)η

−
j

)
∥∥∥∥∥∥

2

2

(4.134)

≤ ∑
j∈[n]

p(j)
∥∥∥πjη

+
j − (1− πj)η

−
j

∥∥∥
2

2
(4.135)

≤ ∑
j∈[n]

∥∥∥πjη
+
j − (1− πj)η

−
j

∥∥∥
2

2
(4.136)

≤ ∑
j∈[n]

∑
y∈Y

∥∥∥y · ηy
j

∥∥∥
2

2
(4.137)

= ∑
j∈[n]

∑
y∈Y

∑
k∈[d]

∣∣∣∣
(

η
y
j

)k
∣∣∣∣
2

(4.138)

=
∥∥M− M̂

∥∥2
F (4.139)

where M, M̂ are defined in Theorem 36. Therefore, by Theorem 36 and taking ε = 0:

‖µD − µ̂S‖2 ≤ ‖µD − µS‖2 +
∥∥M− M̂

∥∥
F (4.140)

≤ ‖µD − µS‖2 +
√

n/2 ·
(
maxj 6=j′ vjj′

)2

minj w2
j
‖B±‖F (4.141)

We bound:

∥∥B±
∥∥

F =

√
∑
j,y

∥∥∥by
j

∥∥∥
2

2
(4.142)

=

√√√√√∑
j,y

∥∥∥∥∥∥
1

mj
∑

i∈Sj : yi=y
xi

∥∥∥∥∥∥

2

2

(4.143)

≤
√

∑
j,y

1
m2

j
·mj
√

X (4.144)

=

√
2n
√

X ·∑
j

1
mj

(4.145)
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and thus Equation 4.141 is upper bounded by:

‖µD − µS‖2 + nX1/4

(
maxj 6=j′ vjj′

)2

minj w2
j
·
√

∑
j∈[n]

1
mj

. (4.146)

Therefore, under the assumptions of Theorem 23 it follows the excess risk is bounded
with probability 1− δ by:

RD,`(θ̂)− RD,`(θ
?) ≤

√
2 + 1
2

· XHL√
m

+ c(X, H) ·
√

1
m

log
(

2
δ

)

+ 2|a|H

X

√
d
m

log
(

2d
δ

)
+ nX1/4

(
maxj 6=j′ vjj′

)2

minj w2
j

√
∑

j∈[n]

1
mj


 . (4.147)

To obtain the Theorem notice:

∑
j∈[n]

1
mj

=
n

Harm(m)
. (4.148)

4.11.9 Proof of Theorem 46

We prove separately Equations 4.33 and 4.34.

4.11.9.1 Proof of Equation 4.33

Unless explicitly stated, all samples like S and S ′ are of size m. To make the reading
of our expectations clear and simple, we shall write EΣm for Eσ∼Σm , ES for E(x,y)∼S ,
ED′m for ES ′∼D and EDm for ES∼D. We now proceed to the proof, that follows the
same main steps as that of Theorem 5 in Bartlett and Mendelson [2002]. For any
q ∈ [0, 1], let us define the convex combination:

`(q, h(x)) .
= q`(h(x)) + (1− q)`(−h(x)) . (4.149)

It follows that:

EΣπ ES [`(σ(x)h(x))] = ES [`(π(x), h(x))] , (4.150)

with π(x) the label proportion of the bag to which x belongs in S . We also have ∀h:

ED [`(yh(x))] ≤ ES [`(π(x), h(x))] + φ(S) , (4.151)

with:

φ(S) .
= sup

g
{ED [`(yg(x))]−ES [`(π(x), g(x))]} . (4.152)
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Let us bound the deviations of φ(S) around its expectation on the sampling of S ,
using McDiarmid’s inequality. This departs from the well known result of Lemma
14 because we have extended the definition of φ(S) to account for the missing labels
by EΣπ . We need to upper bound the maximum difference for the supremum term
computed over two samples S and S ′ of the same size, such that S ′ is S with one
example replaced. We have:

∣∣φ(S)− φ(S ′)
∣∣ ≤

∣∣ES [`(π(x), g(x))]−ES ′ [`(π
′(x), g(x))]

∣∣ , (4.153)

with π and π′ denoting the corresponding label proportions in S and S ′. Let {x1} =
S\S ′ and {x2} = S ′\S . Let x1 ∈ Sj and x2 ∈ S ′j′ for some bags j and j′. The bound
4.153 depends only on bags j and j′. For any x ∈ (Sj ∪ Sj′)\{x1, x2}, with spls, due
to Lemma 34, we have:

`(π(x), g(x))− `(π′(x), g(x)) ≤ |`(g(x))− `(−g(x))|
m(x)

(4.154)

=
|g(x)|

bφm(x)
(4.155)

≤ H
bφm(x)

, (4.156)

where m(x) is the size of the bag to which it belongs in S , plus 1 iff it is bag j′ and
j′ 6= j, minus 1 iff it is bag j and j′ 6= j. Furthermore:

`(π(x), g(x)) = `(|g(x)|) + 1
bφ
· ((1− π(x)1{g(x) > 0}

+ π(x)(1− 1{g(x) > 0})) · |g(x)| (4.157)

≤ `(0) +
1
bφ

((1− π(x))1{g(x) > 0}+ π(x)(1− 1{g(x) > 0})) · H

(4.158)

≤ `(0) +
H
bφ

, ∀x ∈ S . (4.159)

Also, it comes from Lemma 34 that:

`(0) =
1
bφ

(0 · φ′−1(0)− φ(φ′−1(0))) (4.160)

=
−φ(1/2)

bφ
= 1 . (4.161)
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We obtain that:

|φ(S)− φ(S ′)| ≤ 1
m

(
1 +

H
bφ

+ 1 +
H
bφ

)
+

1
m ∑

x∈(Sj∪Sj′ )\{x1,x2}

H
bφm(x)

(4.162)

≤ Q1

m
, (4.163)

where:

Q1
.
= 2

(
2H
bφ

+ 1
)

. (4.164)

So McDiarmid’s inequality yields that with probability ≤ δ/2 over the sampling of
S :

φ(S) ≥ EDm sup
g
{ED [`(yg(x))]−ES [`(π(x), g(x))]}+ Q1

√
1

2m
log

2
δ

(4.165)

We now upper bound the expectation in 4.165. Using the convexity of the supremum,
we have:

EDm sup
g
{ED [`(yg(x))]−ES [`(π(x), g(x))]} (4.166)

= EDm sup
g

{
ED′m [`(yg(x))]−ES [`(π(x), g(x))]

}
(4.167)

≤ EDm,D′m sup
g
{ES ′ [`(yg(x))]−ES [`(π(x), g(x))]} . (4.168)

Consider any set S ∼ D2m, and let I/2 ⊆ [2m] be a subset of m indices, picked
uniformly at random among all (2m

m ) possible choices. For any I ⊆ [2m], let S(I)
denote the subset of examples whose index matches I , and for any x ∈ S(I), let
π(x|S(I)) denote its bag proportion in S(I). For any I/2

l indexed by l ≥ 1 and any
x ∈ S , let:

πs
|l(x) .

=

{
π(x|S(I/2

l )) if x ∈ S(I/2
l )

π(x|S\S(I/2
l )) otherwise

(4.169)

denote the label proportions induced by the split of S in two subsamples S(I/2
l ) and

S\S(I/2
l ). Let:

π`
|l(x) .

=

{
y if x ∈ S(I/2

l )
π(x|S\S(I/2

l )) otherwise
, (4.170)

where y is the true label of x. Let σl(x) .
= 2× 1{x ∈ S(I/2

l )} − 1. The Label Pro-
portion Complexity L(H) quantifies the discrepancy between these two estimators.
When each bag in S has label proportion zero or one, each term factoring classifier
h in Equation 4.32 is zero, so L(H) = 0.
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Lemma 51. The following holds true:

EDm,D′m sup
g
{ES ′ [`(yg(x))]−ES [`(π(x), g(x))]} (4.171)

≤ 2EDm,Σm sup
h
{ES [σ(x)`(π(x), h(x))]}+ L(H) . (4.172)

Proof For any σ ∈ Σm and any sets S = {x1, x2, ..., xm} and S ′ = {x′1, x′2, ..., x′m} of
size m, denote:

Sσ
.
= {x′i iff σi = 1, xi otherwise} , (4.173)

Sσ
.
= {x′i iff σi = −1, xi otherwise} = (S ∪ S ′)\Sσ . (4.174)

and:

π∗(x) .
=

{
πσ(x) if x ∈ Sσ ,
πσ(x) otherwise

, (4.175)

where: πσ(.) denote the label proportions in Sσ and πσ(.) denote the label pro-
portions in Sσ . Let π(.) denote the label proportions in S , π′(.) denote the label
proportions in S ′ (we know each bag to which each example in S ′ belongs to, so we
can compute these estimators), We have:

EDm,D′m sup
h
{ES ′ [`(yh(x))]−ES [`(π(x), h(x))]} (4.176)

= EDm,D′m sup
h

{
ES ′ [`(π

′(x), h(x))]−ES [`(π(x), h(x))]− ∆1

bφ

}
(4.177)

= EDm,D′m sup
h

{
ESσ

[σ(x)`(πl(x), h(x))]−ESσ
[σ(x)`(πr(x), h(x))]− ∆1

bφ

}
, (4.178)

with:

∆1
.
= ES ′ [((1− π′(x))1{y = 1} − π′(x)1{y = −1})h(x)] , (4.179)

πl(x) .
=

1
2
(
(1 + σ(x))π′(x) + (1− σ(x))π(x)

)
, (4.180)

πr(x) .
=

1
2
(
(1 + σ(x))π(x) + (1− σ(x))π′(x)

)
. (4.181)

We also have from Lemma 34:

ESσ
[σ(x)`(πl(x), h(x))] = ESσ

[σ(x)`(πσ(x), h(x))]− ∆2

bφ
, (4.182)

ESσ
[σ(x)`(πr(x), h(x))] = ESσ

[σ(x)`(πσ(x), h(x))]− ∆3

bφ
, (4.183)
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with:

∆2
.
= ESσ

[σ(x)(πl(x)− πσ(x))h(x)] , (4.184)

∆3
.
= ESσ

[σ(x)(πr(x)− πσ(x))h(x)] . (4.185)

We also have:

∆3 − ∆2 − ∆1 = ES ′ [(π∗(x)− 1{y = 1})h(x)] + ES [(π(x)− π∗(x))h(x)] (4.186)
.
= ∆4 . (4.187)

Putting Equations 4.178, 4.182, 4.183 and 4.187 altogether, we get, after introducing
Rademacher variables:

EDm,D′m,Σm sup
h
{ES ′ [`(yh(x))]−ES [`(π(x), h(x))]} (4.188)

= EDm,D′m,Σm sup
h
{ESσ

[σ(x)`(πσ(x), h(x))]−ESσ
[σ(x)`(πσ(x), h(x))] + ∆4} (4.189)

≤ EDm,D′m,Σm sup
h
{ESσ

[σ(x)`(πσ(x), h(x))]−ESσ
[σ(x)`(πσ(x), h(x))]}

+ EDm,D′m,Σm sup
h
{ES ′ [(π∗(x)− 1{y = 1})h(x)] + ES [(π(x)− π∗(x))h(x)]}

(4.190)

= EDm,D′m,Σm sup
h

{
ES ′ [σ(x)`(π′(x), h(x))]−ES [σ(x)`(π(x), h(x))]

}

+ EDm,D′m,Σm sup
h
{ES ′ [(π∗(x)− 1{y = 1})h(x)] + ES [(π(x)− π∗(x))h(x)]}

(4.191)

≤ 2EDm,Σm sup
h
{ES [σ(x)`(π(x), h(x))]}

+ EDm,D′m,Σm sup
h
{ES ′ [(π∗(x)− 1{y = 1})h(x)] + ES [(π(x)− π∗(x))h(x)]} .

(4.192)

Equation 4.191 holds because the distribution of the supremum is the same. We also
have:

EDm,D′m,Σm sup
h
{ES ′ [(π∗(x)− 1{y = 1})h(x)] + ES [(π(x)− π∗(x))h(x)]} (4.193)

= EDm,D′m,Σm sup
h
{ES [(π(x)− π∗(x))h(x)]−ES ′ [(1{y = 1} − π∗(x))h(x)]} (4.194)

= ED2m EI/2
1 ,I/2

2
sup

h
ES [σ1(x)(πs

|2(x)− π`
|1(x))h(x)] (4.195)

= L(H) . (4.196)

Equation 4.195 holds because swapping the sample does not make any difference in
the outer expectation, as each couple of swapped samples is generated with the same
probability without swapping. Putting altogether 4.192 and 4.196 ends the proof of
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Lemma 51.

We now bound the deviations of EΣm suph {ES [σ(x)`(π(x), h(x))]} with respect to
its expectation over the sampling of S , EDm,Σm suph {ES [σ(x)`(π(x), h(x))]}. To do
that, we use a third time McDiarmid’s inequality and compute an upper bound for:

∣∣∣∣
EΣm suph {ES1 [σ(x)`(π(x), h(x))]}
−EΣm suph {ES2 [σ(x)`(π(x), h(x))]}

∣∣∣∣ (4.197)

≤ EΣm

[∣∣∣∣
suph {ES1 [σ(x)`(π(x), h(x))]}
− suph {ES2 [σ(x)`(π(x), h(x))]}

∣∣∣∣
]

(4.198)

≤ max
Σm

[∣∣∣∣
suph {ES1 [σ(x)`(π(x), h(x))]}
− suph {ES2 [σ(x)`(π(x), h(x))]}

∣∣∣∣
]
≤ Q1

m
, (4.199)

where Q1 is defined in Equation 4.164. Equation 4.198 holds because of the triangular
inequality. Inequality 4.199 holds because |σ(·)| = 1. So with probability ≤ δ/2 over
the sampling of S :

EΣm sup
h
{ES [σ(x)`(π(x), h(x))]}

≤ EDm,Σm sup
h
{ES [σ(x)`(π(x), h(x))]} −Q1

√
1

2m
log

2
δ

, (4.200)

where Q1 is defined via Equation 4.163. We obtain that with probability > 1− (δ/2+
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δ/2) = 1− δ, the following holds ∀h:

ED [`(yh(x))]

≤ ES [`(π(x), h(x))] + φ(S) (see 4.151 and 4.152) (4.201)

≤ ES [`(π(x), h(x))] + EDm sup
g
{ED [`(yg(x))]−ES [`(π(x), g(x))]}

+ Q1

√
1

2m
log

2
δ

(from 4.165) (4.202)

≤ ES [`(π(x), h(x))] + EDm,D′m sup
g
{ES ′ [`(yg(x))]−ES [`(π(x), g(x))]}

+ Q1

√
1

2m
log

2
δ

(from 4.168) (4.203)

≤ ES [`(π(x), h(x))] + 2EDm,Σm sup
g
{ES [σ(x)`(π(x), g(x))]}+ L(H)

+ Q1

√
1

2m
log

2
δ

(Lemma 51) (4.204)

≤ ES [`(π(x), h(x))] + 2EΣm sup
h
{ES [σ(x)`(π(x), h(x))]}+ L(H)

+ 2Q1

√
1

2m
log

2
δ

(from 4.200) (4.205)

= EΣπ ES [`(σ(x)h(x))] + 2Rb(` ◦ H ◦ S) + L(H)

+ 4
(

2H
bφ

+ 1
)√

1
2m

log
2
δ

, (4.206)

as claimed.

4.11.9.2 Proof of Equation 4.34

We have `′(x) = −(1/bφ)(φ?)′(−x) = −(1/bφ)(φ′)−1(−x) ∈ [−1/bφ, 0]. ` is there-
fore 1/bφ-Lipschitz. So Theorem 4.12 in Ledoux and Talagrand [1991] brings:

Rb(F, η) = Eσ∼Σm sup
h∈H

{
Ei∼[m][σiEσ′∼Σπ

[`(σ′i h(xi)− η)]]
}

(4.207)

≤ bφEσ∼Σm sup
h∈H

{
Ei∼[m][σiEσ′∼Σπ

[σ′i h(xi)− η]]
}

(4.208)

= bφEσ∼Σm sup
h∈H

{
Ei∼[m][σiEσ′∼Σπ

[σ′i h(xi)]]
}

(4.209)

= bφEσ∼Σm sup
h∈H

{
Ei∼[m][σi(2π(xi)− 1)h(xi)]

}
, (4.210)

as claimed.
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Figure 4.2: Violation of homogeneity assumption
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Figure 4.3: alter-∝SVM: empirical distribution of AUC (a), and relationship between
loss and AUC in two different train spit (b)(c)

4.12 Appendix: additional experimental results

4.12.1 Simulated domain for violation of homogeneity assumption

The synthetic data generated for this test consists on 16 classification problems, each
one formed by 16 bags of 100 two-dimensional normal samples. The distribution gen-
erating the first dataset satisfies the homogeneity assumption (Figure 4.2 (a)). Then,
we gradually change the position of the class-conditional bag-conditional means on
one linear direction (to the right on Figure 4.2 (b) and (c)), with different offsets for
different bags. In Figure 4.2 we give a graphical explanation of the process on 3 bags.

4.12.2 Additional tests on alter-∝SVM Yu et al. [2013]

In our experiments, we observe that the AUC achieved by ∝SVM can be very high,
but it is also often below 0.5; in those cases the algorithm outputs models which are
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Figure 4.4: Learning runtime of LMM for bags number (a), and for domain size
one-shot (b) and iterative methods (c)

worse than random and the average performance over the 5 test splits drops. We are
able to reproduce the same behavior on the heart dataset provided by the authors in
a demo for alter-∝SVM; this also proves our bag assignment for LLP simulation does
not introduce the issue. In a first test, we randomly select 3/4 of the dataset, and
randomly assign instances to 4 bags of fixed size 64, following Yu et al. [2013]. We
repeat the training split 50 times with C = Cp = 1, as in the demo, and we measure
AUC on the same training set. As expected, a consistent number of run (22%) ends
up producing AUC smaller than 0.5. We display in Figure 4.3 (a) the AUC density
profile, which shows a relevant mass around 0.25; notice also the two distribution
modes look symmetric around 0.5.

In a second test, we investigate further measuring pairs of training set AUC and
losses obtained by the same execution of the algorithm. In this case, we run over all
parameters ranges defined in ∝SVM paper, and do not pick the model that minimizes
the loss over the 10 random runs, but record losses of all. Figures 4.3 (b) and (c) show
scatter plots relative to two chosen training set splits. We observe that loss minimiza-
tion can lead both to high and low AUC, with few points close to 0.5. A possible
explanation might be found in the inverted polarity of the learned linear classifier;
inverted polarity in this contest means having a model which would achieve better
performance classifying instances labels opposite to the ones predicted. We conclude
that optimizing ∝SVM loss in some cases might be equivalent to train a max-margin
separator of the unlabeled data, exploiting only weakly the information given by
the label proportions. This would give a heuristic understanding of the frequent
symmetrical behavior of the AUC.

4.12.3 Scalability

Figure 4.1 (a) shows runtime of learning (including cross-validation) of MM and
LMM with regard to the number of bags – which is the natural parameter of time
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dataset instances feature
arrhythmia 452 297
australian 690 39
breastw 699 11
colic 368 83
german 1000 27
heart 270 14
ionosphere 351 37
vertebral column 620 9
vote 435 49
wine 178 16

Table 4.5: Small domains size

complexity for our Laplacian-based methods. Although the 3 layers of cross-validation
of LMMG,s, LMMnc results the only method clearly not scalable. Figure 4.1 (b)
presents how our one-shots algorithms scale on all small domains as a function of
problem size. Runtime is averaged over the different bag assignments. The same
plot is given in Figure 4.1 (c) for iterative algorithms, in particular AMMmin and
(alter/conv)-∝SVM. All curves are completed with measurements on bigger domains
when available. Runtime of SVMs is not directly comparable with our methods. This
is due to both (a) the implementation on different programming languages and (b)
to the fact that the code provided implements kernel SVM, even for linear kernels,
which is a big overhead in computation and memory access. Nevertheless, the high
growth rate of conv-∝SVM makes the algorithm not suitable for large datasets. No-
ticeably, even if alter-∝SVM does not show such behavior, we are not able to run it
on the bigger domains, since it requires several hours to run on a training set split
with fixed parameters.

4.12.4 Full results on small domains

Finally we report details about all experiments run on the 10 small domains (Table
4.5). In the following Tables, columns show the number of bags generated through
k-MEANS. Each cell contains average AUC over 5 test splits and standard deviation;
runtime in second is in the separated column. Best performing algorithm and ones
not worse than 0.1 AUC are bold faced. Comparisons are made in the respective
top/bottom sub-tables, which group one-shot and iterative algorithms. We use ↑ to
highlight runs which achieve AUC greater or equal than the Oracles.
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Figure 4.5: Relative AUC (w.r.t. Oracle) vs entropy on arrhythmia
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Figure 4.6: Relative AUC (w.r.t. Oracle) vs entropy on australian
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Figure 4.7: Relative AUC (w.r.t. Oracle) vs entropy on breastw
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Figure 4.8: Relative AUC (w.r.t. Oracle) vs entropy on colic
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Figure 4.9: Relative AUC (w.r.t. Oracle) vs entropy on german
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Figure 4.10: Relative AUC (w.r.t. Oracle) vs entropy on heart
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Figure 4.11: Relative AUC (w.r.t. Oracle) vs entropy on ionosphere
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Figure 4.12: Relative AUC (w.r.t. Oracle) vs entropy on vertebral column
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Figure 4.13: Relative AUC (w.r.t. Oracle) vs entropy on vote
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Figure 4.14: Relative AUC (w.r.t. Oracle) vs entropy on wine
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algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 70.91 ± 6.81 2 50.55 ± 7.54 2 50.31 ± 7.55 2 47.03 ± 6.60 2 52.34 ± 7.25 2
MM 64.99 ± 2.99 2 60.48 ± 7.28 1 68.17 ± 5.95 2 70.01 ± 9.33 2 72.85 ± 9.49 2
LMMG 64.99 ± 2.99 18 68.10 ± 4.43 17 71.53 ± 2.36 20 72.06 ± 7.62 18 76.29 ± 7.91 20
LMMG,s 64.99 ± 2.99 49 68.34 ± 3.95 49 71.53 ± 2.36 54 72.06 ± 7.62 52 76.29 ± 7.91 57
LMMnc 64.99 ± 2.99 83 61.19 ± 7.53 83 70.21 ± 5.17 119 70.89 ± 9.86 267 73.82 ± 9.29 854
InvCal 64.75 ± 3.04 17 66.12 ± 260 17 60.87 ± 3.54 17 44.46 ± 3.36 17 56.36 ± 5.26 17

A
M

M
m

in

AMMEMM 59.54 ± 7.52 9 52.65 ± 3.10 8 63.46 ± 10.37 8 67.85 ± 9.56 8 75.65 ± 8.81 8
AMMMM 57.29 ± 5.95 7 60.00 ± 7.96 4 70.12 ± 6.46 4 73.66 ± 8.86 5 78.36 ± 8.53 5
AMMG 58.15 ± 6.83 31 68.80 ± 2.15 28 73.08 ± 2.92 30 74.54 ± 7.98 29 80.32 ± 8.08 30
AMMG,s 56.67 ± 4.66 92 69.83 ± 2.69 84 73.08 ± 2.92 88 73.34 ± 7.62 88 80.32 ± 8.08 91
AMMnc 57.29 ± 5.95 97 59.71 ± 8.39 90 71.43 ± 6.21 126 73.49 ± 8.95 274 78.04 ± 8.26 862
AMM1 65.80 ± 6.92 5 70.00 ± 5.89 4 68.17 ± 7.19 4 69.93 ± 4.27 4 72.31 ± 5.02 5
AMM10ran 54.09 ± 12.03 30 55.78 ± 17.36 32 66.38 ± 7.32 51 66.89 ± 6.75 51 73.61 ± 5.15 57

A
M

M
m

ax

AMMEMM 50.59 ± 5.97 41 59.32 ± 5.82 41 60.85 ± 5.43 37 60.38 ± 4.08 41 58.31 ± 8.40 40
AMMMM 62.08 ± 9.46 45 46.86 ± 3.90 34 67.28 ± 8.92 33 74.04 ± 9.46 35 71.00 ± 7.65 38
AMMG 62.08 ± 9.46 141 62.27 ± 8.14 128 65.78 ± 3.92 118 64.64 ± 10.26 121 73.07 ± 6.72 124
AMMG,s 62.08 ± 9.46 414 63.13 ± 5.17 380 63.85 ± 7.00 346 65.49 ± 10.62 354 73.05 ± 6.70 374
AMMnc 62.08 ± 9.46 206 55.57 ± 6.07 182 64.30 ± 6.24 207 76.33 ± 3.96 362 70.82 ± 4.23 965
AMM1 60.53 ± 9.79 31 54.14 ± 13.28 34 67.45 ± 3.91 32 55.85 ± 8.96 35 61.26 ± 6.95 38
AMM10ran 49.79 ± 8.14 307 55.37 ± 14.62 370 53.78 ± 5.13 301 60.62 ± 8.04 322 64.20 ± 2.84 338

SV
M alter-∝ 49.24 ± 3.92 96 57.10 ± 2.71 100 56.38 ± 2.73 104 35.31 ± 1.30 114 38.68 ± 6.10 125

conv-∝ 54.15 ± 2.22 2054 34.82 ± 3.20 2078 38.31 ± 8.24 2168 61.96 ± 1.10 1930 48.77 ± 5.73 2004
Oracle 99.99 ± 0.02 2 99.98 ± 0.05 2 99.94 ± 0.13 2 100.00 ± 0.00 2 99.97 ± 0.07 2

Table 4.6: arrhythmia

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 66.48 ± 3.16 <1 64.67 ± 4.22 <1 63.56 ± 4.00 <1 64.17 ± 4.80 <1 63.14 ± 5.41 <1
MM 81.08 ± 1.66 <1 87.11 ± 2.68 <1 87.49 ± 2.86 1 87.36 ± 2.22 <1 89.53 ± 2.13 2
LMMG 81.08 ± 1.66 4 87.09 ± 2.82 4 87.81 ± 3.16 5 88.46 ± 2.50 6 89.69 ± 2.68 8
LMMG,s 81.08 ± 1.66 14 87.81 ± 3.08 15 87.88 ± 3.21 19 89.18 ± 2.05 20 90.80 ± 2.53 27
LMMnc 81.08 ± 1.66 57 87.02 ± 2.72 49 87.46 ± 3.03 57 88.06 ± 2.31 90 89.41 ± 2.41 217
Invcal 19.67 ± 2.23 5 59.50 ± 5.86 5 68.00 ± 5.27 5 60.83 ± 3.17 5 51.81 ± 4.72 5

A
M

M
m

in

AMMEMM 86.65 ± 2.06 4 86.59 ± 3.08 4 86.50 ± 4.11 4 89.51 ± 2.48 6 88.85 ± 4 6
AMMMM 87.54 ± 3.84 3 84.35 ± 3.63 4 86.99 ± 3.87 4 89.43 ± 1.34 4 89.55 ± 3.18 5
AMMG 87.54 ± 3.84 10 84.79 ± 3.17 13 86.78 ± 4.21 14 89.52 ± 2.18 14 89.88 ± 2.78 18
AMMG,s 87.54 ± 3.84 30 85.12 ± 3.75 39 86.75 ± 4.19 43 90.37 ± 1.67 43 89.95 ± 2.80 54
AMMnc 87.54 ± 3.84 63 85.10 ± 3.55 57 86.63 ± 4.02 66 89.00 ± 1.83 97 90.11 ± 2.93 227
AMM1 72.60 ± 5.70 2 85.04 ± 2.53 3 86.89 ± 3.73 4 88.91 ± 2.32 4 88.98 ± 3.00 4
AMM10ran 79.21 ± 5.07 27 80.97 ± 2.27 31 85.08 ± 3.30 34 89.19 ± 1.81 46 87.70 ± 2.68 47

A
M

M
m

ax

AMMEMM 80.09 ± 3.99 17 71.46 ± 1.85 16 73.41 ± 6.07 16 73.25 ± 3.33 18 81.73 ± 3.60 19
AMMMM 86.83 ± 4.26 20 72.96 ± 2.30 15 70.25 ± 4.65 16 73.89 ± 5.77 18 75.91 ± 3.50 21
AMMG 86.83 ± 4.26 61 73.32 ± 1.95 48 71.16 ± 4.94 51 73.57 ± 6.86 55 75.25 ± 3.18 63
AMMG,s 86.83 ± 4.26 181 73.25 ± 2.03 143 71.19 ± 4.91 153 74.77 ± 6.85 163 75.25 ± 3.18 188
AMMnc 86.83 ± 4.26 114 73.74 ± 2.48 92 70.36 ± 5.16 102 75.16 ± 5.71 138 76.44 ± 2.74 272
AMM1 69.57 ± 3.99 15 73.12 ± 3.41 15 68.25 ± 2.80 16 71.02 ± 5.46 17 81.70 ± 3.02 19
AMM10ran 77.82 ± 9.12 192 68.82 ± 4.73 138 73.58 ± 4.29 146 72.21 ± 9.35 164 74.16 ± 5.25 188

SV
M alter-∝ 53.26 ± 2.07 25 51.08 ± 2.35 27 50.90 ± 1.63 31 48.29 ± 4.51 38 41.66 ± 5.11 64

conv-∝ 77.80 ± 6.16 3924 66.14 ± 4.68 3790 57.94 ± 18.54 3244 61.37 ± 21.17 3327 63.73 ± 11.33 3603
Oracle 92.81 ± 2.89 <1 92.68 ± 2.24 <1 92.44 ± 3.01 ,1 92.61 ± 2.03 <1 92.99 ± 3.58 <1

Table 4.7: australian
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algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 48.65 ± 7.54 <1 71.45 ± 16.59 <1 61.68 ± 7.47 <1 34.88 ± 12.33 <1 47.50 ± 22.77 <1
MM 99.42 ± 0.44 2 99.30 ± 0.39 <1 99.28 ± 0.25 <1 99.28 ± 0.37 <1 99.18 ± 0.47 1
LMMG 99.42 ± 0.44 6 99.33 ± 0.38 3 99.28 ± 0.25 3 99.35 ± 0.39 3 99.22 ± 0.46 4
LMMG,s 99.42 ± 0.44 20 99.34 ± 0.39 10 99.37 ± 0.24 ↑ 11 99.36 ± 0.38 12 99.23 ± 0.44 15
LMMnc 99.42 ± 0.44 41 99.29 ± 0.40 39 99.27 ± 0.25 41 99.30 ± 0.38 59 99.20 ± 0.47 125
Invcal 19.67 ± 2.23 5 59.50 ± 5.86 5 68 ± 5.27 5 60.83 ± 3.17 5 51.81 ± 4.72 5

A
M

M
m

in

AMMEMM 99.37 ± 0.42 1 99.33 ± 0.39 1 99.17 ± 0.54 1 99.34 ± 0.40 2 99.29 ± 0.49 2
AMMMM 99.34 ± 0.46 2 99.30 ± 0.37 1 99.36 ± 0.27 ↑ 2 99.29 ± 0.41 2 99.29 ± 0.48 2
AMMG 99.34 ± 0.46 8 99.30 ± 0.37 ↑ 5 99.36 ± 0.27 ↑ 6 99.29 ± 0.41 7 99.30 ± 0.49 8
AMMG,s 99.34 ± 0.46 23 99.30 ± 0.37 ↑ 16 99.36 ± 0.27 ↑ 19 99.29 ± 0.41 20 99.30 ± 0.49 25
AMMnc 99.34 ± 0.46 43 99.31 ± 0.35 41 99.36 ± 0.27 ↑ 44 99.29 ± 0.41 62 99.29 ± 0.48 129
AMM1 99.35 ± 0.45 <1 99.32 ± 0.37 1 99.20 ± 0.45 1 99.30 ± 0.42 1 99.31 ± 0.48 2
AMM10ran 99.36 ± 0.45 8 99.11 ± 0.56 9 99.26 ± 0.35 11 99.28 ± 0.43 11 99.32 ± 0.49 ↑ 14

A
M

M
m

ax

AMMEMM 99.42 ± 0.55 6 99.02 ± 0.66 6 99.32 ± 0.25 ↑ 6 99.43 ± 0.30 ↑ 7 99.40 ± 0.38 ↑ 9
AMMMM 99.01 ± 1.12 6 99.00 ± 0.64 6 99.32 ± 0.35 ↑ 6 99.37 ± 0.38 7 99.39 ± 0.39 ↑ 9
AMMG 99.01 ± 1.12 20 98.99 ± 0.64 17 99.33 ± 0.35 ↑ 18 99.37 ± 0.38 21 99.41 ± 0.39 ↑ 27
AMMG,s 99.01 ± 1.12 60 98.99 ± 0.64 52 99.19 ± 0.45 55 99.37 ± 0.39 63 99.41 ± 0.39 ↑ 82
AMMnc 99.01 ± 1.12 55 98.99 ± 0.64 53 99.32 ± 0.35 ↑ 56 99.37 ± 0.39 76 99.40 ± 0.38 ↑ 148
AMM1 99.09 ± 1.08 5 99.09 ± 0.46 5 99.29 ± 0.26 5 99.37 ± 0.38 6 99.40 ± 0.38 ↑ 8
AMM10ran 98.97 ± 1.29 47 98.58 ± 0.75 48 99.39 ± 0.27 ↑ 52 99.37 ± 0.38 61 99.36 ± 0.41 ↑ 81

SV
M alter-∝ 68.63 ± 17.63 24 93.24 ± 4.43 25 75.17 ± 7.19 33 90.11 ± 2.58 42 18.23 ± 5.67 82

conv-∝ 99.41 ± 0.48 3346 56.33 ± 4.28 3043 77.71 ± 15.51 2800 32.90 ± 7.24 3036 67.21 ± 8.19 2037
Oracle 99.48 ± 0.41 <1 99.53 ± 0.41 <1 99.31 ± 0.37 <1 99.43 ± 0.39 <1 99.32 ± 0.44 <1

Table 4.8: breastw

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 60.69 ± 11.30 <1 51.83 ± 6.36 <1 52.99 ± 5.37 <1 53.83 ± 11.49 <1 52.95 ± 13.28 <1
MM 62.00 ± 6.44 <1 70.48 ± 7.43 <1 67.13 ± 9.85 2 72.60 ± 9.35 1 72.05 ± 3.38 1
LMMG 62.00 ± 6.44 7 70.37 ± 7.47 6 72.15 ± 8.51 8 75.96 ± 10.38 8 75.47 ± 3.59 9
LMMG,s 62.00 ± 6.44 20 72.10 ± 6.26 20 75.08 ± 7.14 28 78.54 ± 10.20 26 76.43 ± 3.10 27
LMMnc 62.00 ± 6.44 31 70.45 ± 7.46 33 68.38 ± 9.69 52 74.04 ± 10.02 112 72.87 ± 3.20 345
Invcal 38.73 ± 5.43 6 65.87 ± 6.70 6 59.30 ± 3.28 6 61.54 ± 4.17 6 59.53 ± 10.00 6

A
M

M
m

in

AMMEMM 59.12 ± 8.86 3 56.23 ± 8.49 3 70.93 ± 10.31 3 78.22 ± 6.00 3 74.22 ± 6.35 4
AMMMM 77.44 ± 3.16 2 78.84 ± 6.95 3 69.46 ± 6.44 4 71.93 ± 7.61 4 81.44 ± 5.18 4
AMMG 77.44 ± 3.16 11 79.41 ± 2.23 12 72.62 ± 5.42 14 77.80 ± 8.11 14 84.05 ± 2.33 16
AMMG,s 77.44 ± 3.16 34 79.41 ± 2.23 36 71.19 ± 5.38 41 76.71 ± 6.70 40 83.27 ± 3.14 47
AMMnc 77.44 ± 3.16 36 78.33 ± 7.35 38 70.95 ± 4.69 57 74.67 ± 9.10 117 79.86 ± 4.87 352
AMM1 38.69 ± 7.18 1 56.07 ± 14.68 2 75.14 ± 4.78 2 75.36 ± 5.64 3 77.51 ± 5.00 3
AMM10ran 37.63 ± 4.19 10 77.75 ± 5.66 12 74.95 ± 5.64 15 76.59 ± 10.81 17 78.94 ± 4.17 23

A
M

M
m

ax

AMMEMM 50.94 ± 6.54 9 62.44 ± 9.94 9 57.53 ± 13.37 15 53.63 ± 14.71 17 67.63 ± 5.63 19
AMMMM 43.05 ± 14.65 8 75.40 ± 4.64 9 63.72 ± 14.41 16 55.37 ± 10.19 18 69.49 ± 3.17 20
AMMG 43.05 ± 14.65 28 78.19 ± 5.93 31 63.14 ± 7.53 51 61.32 ± 5.69 57 68.21 ± 9.35 62
AMMG,s 43.05 ± 14.65 84 77.91 ± 6.36 91 62.57 ± 6.11 151 64.42 ± 10.77 168 69.47 ± 6.40 184
AMMnc 42.92 ± 14.74 52 73.74 ± 7.21 57 60.39 ± 12.21 94 62.46 ± 15.13 162 68.63 ± 2.37 381
AMM1 51.92 ± 19.91 7 59.89 ± 10.79 8 58.76 ± 12.16 14 62.31 ± 13.32 17 68.25 ± 6.42 18
AMM10ran 56.39 ± 10.26 60 71.28 ± 8.76 68 65.01 ± 13.85 114 69.59 ± 9.96 139 74.40 ± 5.54 159

SV
M alter-∝ 46.33 ± 2.73 18 50.82 ± 1.21 19 60.84 ± 5.51 23 62.20 ± 3.79 32 57.04 ± 10.10 49

conv-∝ 25.27 ± 3.45 1438 35.96 ± 9.34 1460 50.31 ± 5.57 1439 35.46 ± 9.11 1423 50.13 ± 8.34 1427
Oracle 86.19 ± 4.23 <1 87.80 ± 2.50 <1 87.05 ± 6.05 <1 86.53 ± 7.15 <1 87.97 ± 2.02 <1

Table 4.9: colic
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algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 47.90 ± 4.51 <1 50.11 ± 5.17 <1 46.02 ± 5.88 <1 50.94 ± 1.61 <1 51.02 ± 2.55 <1
MM 61.07 ± 5.57 <1 62.09 ± 4.00 <1 65.50 ± 6.54 2 65.61 ± 6.05 2 66.96 ± 4.56 2
LMMG 61.07 ± 5.57 4 62.14 ± 4.04 4 67.07 ± 6.36 6 66.43 ± 6.61 6 70.18 ± 4.76 7
LMMG,s 61.07 ± 5.57 11 62.75 ± 3.32 12 67.91 ± 5.80 16 66.40 ± 6.90 19 70.43 ± 5.57 21
LMMnc 61.07 ± 5.57 103 62.04 ± 4.00 87 65.47 ± 6.56 87 65.61 ± 6.06 113 67.01 ± 4.58 209
Invcal 38.74 ± 5.43 6 65.87 ± 6.70 6 59.30 ± 3.28 6 61.53 ± 4.17 6 59.54 ± 10.00 6

A
M

M
m

in

AMMEMM 53.89 ± 6.82 7 48.63 ± 8.71 7 53.24 ± 8.02 8 57.58 ± 3.44 9 63.64 ± 11.82 11
AMMMM 60.45 ± 5.58 5 63.33 ± 4.99 6 74.58 ± 4.76 6 72.43 ± 1.39 8 75.84 ± 5.24 7
AMMG 60.45 ± 5.58 17 64.16 ± 6.99 18 74.18 ± 4.34 21 72.08 ± 1.24 22 75.94 ± 4.55 24
AMMG,s 60.45 ± 5.58 52 64.20 ± 7.24 57 74.29 ± 4.50 57 72.18 ± 1.37 66 75.77 ± 4.44 74
AMMnc 60.45 ± 5.58 118 63.20 ± 6.09 101 75.37 ± 4.42 100 72.53 ± 1.25 130 75.99 ± 5.26 225
AMM1 37.08 ± 4.42 3 38.53 ± 2.97 3 41.89 ± 2.07 6 41.13 ± 2.58 9 47.09 ± 9.40 10
AMM10ran 49.12 ± 6.50 36 60.31 ± 5.57 38 73.82 ± 4.70 44 72.07 ± 3.22 54 74.73 ± 4.54 72

A
M

M
m

ax

AMMEMM 46.45 ± 3.30 18 46.31 ± 3.02 19 67.34 ± 13.42 19 72.41 ± 6.17 20 74.58 ± 4.63 22
AMMMM 52.47 ± 8.88 18 58.61 ± 12.19 18 65.14 ± 21.84 19 74.90 ± 4.86 20 74.88 ± 3.75 22
AMMG 52.47 ± 8.88 54 56.12 ± 12.25 53 74.93 ± 8.18 57 73.87 ± 4.55 60 75.43 ± 4.02 67
AMMG,s 52.47 ± 8.88 160 54.79 ± 11.61 158 74.84 ± 8.12 167 73.87 ± 4.55 180 75.40 ± 4.05 197
AMMnc 52.47 ± 8.88 154 49.24 ± 12.68 137 65.11 ± 21.84 137 74.89 ± 4.75 167 74.70 ± 3.71 269
AMM1 58.39 ± 13.20 17 61.04 ± 14.43 17 69.66 ± 16.93 17 76.49 ± 3.29 18 75.44 ± 3.65 20
AMM10ran 50.47 ± 9.69 168 56.78 ± 10.89 164 60.41 ± 15.48 160 61.62 ± 18.81 170 73.25 ± 6.97 191

SV
M alter-∝ 49.36 ± 1.68 34 49.59 ± 1.58 37 48.43 ± 2.23 40 48.85 ± 1.55 47 51.05 ± 2.72 64

conv-∝ 29.70 ± 2.03 6031 64.15 ± 5.43 6343 63.01 ± 2.59 6362 62.01 ± 3.61 6765 63.17 ± 3.62 7004
Oracle 79.43 ± 2.88 <1 78.95 ± 3.99 <1 79.18 ± 1.70 <1 79.42 ± 2.80 <1 79.02 ± 3.62 <1

Table 4.10: german

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 51.82 ± 12.39 <1 50.43 ± 23.03 <1 55.09 ± 19.44 <1 49.55 ± 17.47 <1 63.49 ± 18.11 <1
MM 68.75 ± 6.09 <1 60.24 ± 13.54 <1 80.35 ± 9.42 <1 76.11 ± 6.66 1 83.50 ± 6.22 1
LMMG 68.75 ± 6.09 3 68.04 ± 8.53 3 82.87 ± 6.16 4 82.92 ± 1.28 4 85.85 ± 3.84 6
LMMG,s 68.75 ± 6.09 9 69.04 ± 6.52 12 83.68 ± 5.90 13 82.96 ± 1.79 14 86.36 ± 3.94 17
LMMnc 68.75 ± 6.09 11 60.40 ± 14.18 12 80.24 ± 9.74 189 78.14 ± 4.98 42 84.47 ± 5.06 119
Invcal 28.84 ± 4.96 4 70.58 ± 6.45 4 37.33 ± 10.31 4 44.96 ± 9.64 4 62.76 ± 15.05 4

A
M

M
m

in

AMMEMM 60.50 ± 30.88 <1 63.36 ± 28.50 1 72.05 ± 19.17 1 80.87 ± 15.51 1 91.63 ± 6.10 ↑ 2
AMMMM 86.59 ± 6.14 1 80.57 ± 16.72 1 87.96 ± 4.50 2 90.04 ± 5.14 2 91.45 ± 5.70 ↑ 2
AMMG 86.59 ± 6.14 5 86.70 ± 5.45 5 87.46 ± 2.67 6 91.06 ± 2.87 7 91.55 ± 5.93 ↑ 9
AMMG,s 86.59 ± 6.14 15 86.70 ± 5.45 16 88.31 ± 4.00 18 90.86 ± 2.81 21 91.55 ± 5.93 ↑ 27
AMMnc 86.59 ± 6.14 13 78.97 ± 16.78 14 87.82 ± 4.42 21 90.48 ± 3.53 45 91.25 ± 5.77 125
AMM1 90.62 ± 5.82 <1 89.19 ± 5.90 1 88.64 ± 3.21 1 90.78 ± 2.10 1 91.03 ± 5.82 1
AMM10ran 78.38 ± 30.44 5 87.32 ± 4.71 6 89.85 ± 2.31 7 91.02 ± 2.49 9 90.47 ± 6.39 14

A
M

M
m

ax

AMMEMM 85.74 ± 13.28 3 84.60 ± 10.87 4 84.60 ± 7.84 3 89.83 ± 2.72 5 71.65 ± 18.52 6
AMMMM 85.35 ± 11.06 4 82.43 ± 9.76 4 90.49 ± 4.75 4 89.92 ± 2.90 89.35 ± 6.98 7
AMMG 85.35 ± 11.06 13 87.18 ± 6.56 13 90.49 ± 4.75 13 89.58 ± 2.79 16 88.55 ± 9.71 23
AMMG,s 85.35 ± 11.06 39 90.49 ± 5.05 40 90.58 ± 4.77 40 89.58 ± 2.79 49 89.94 ± 6.63 67
AMMnc 85.35 ± 11.06 20 82.73 ± 9.23 21 89.84 ± 4.24 30 90.06 ± 3.20 54 89.54 ± 6.60 140
AMM1 72.77 ± 37.27 4 89.31 ± 3.99 3 89.68 ± 3.79 3 90.62 ± 3.18 5 87.97 ± 9.42 6
AMM10ran 89.96 ± 5.62 32 89.93 ± 5.02 31 88.03 ± 3.16 30 90.80 ± 3.61 38 89.61 ± 8.68 54

SV
M alter-∝ 47.75 ± 17.58 15 59.72 ± 18.21 16 62.32 ± 12.83 20 58.49 ± 10.98 27 48.33 ± 12.77 47

conv-∝ 46.18 ± 43.41 1211 87.13 ± 5.30 1185 69.03 ± 23.18 1197 42.78 ± 23.51 1188 50.34 ± 15.75 1080
Oracle 91.72 ± 3.95 <1 91.22 ± 4.09 <1 91.27 ± 2.88 <1 91.54 ± 2.76 <1 91.42 ± 5.46 <1

Table 4.11: heart
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algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 44.28 ± 12.13 <1 51.86 ± 8.01 <1 50.69 ± 6.34 <1 44.60 ± 3.91 <1 48.91 ± 11.73 <1
MM 64.81 ± 8.82 <1 77.74 ± 5.23 1 78.95 ± 7.36 1 86.76 ± 2.96 1 88.13 ± 4.16 2
LMMG 64.81 ± 8.82 5 80.80 ± 2.32 6 83.46 ± 4.62 5 87.12 ± 2.23 7 88.24 ± 4.41 7
LMMG,s 64.81 ± 8.82 14 82.12 ± 2.50 15 83.24 ± 4.84 15 87.23 ± 1.57 17 87.99 ± 4.58 21
LMMnc 64.81 ± 8.82 20 79.39 ± 2.12 22 81.18 ± 6.40 32 87.05 ± 2.48 68 88.34 ± 4.32 182
Invcal 35.34 ± 8.76 5 44.78 ± 15.37 5 53.28 ± 9.02 5 53.52 ± 8.51 5 54.08 ± 9.53 5

A
M

M
m

in

AMMEMM 56.77 ± 6.42 2 85.07 ± 5.24 2 86.04 ± 5.21 2 86.81 ± 3.81 2 86.71 ± 3.54 3
AMMMM 46.67 ± 8.53 3 84.52 ± 4.60 2 84.23 ± 6.67 2 85.92 ± 4.48 3 87.77 ± 5.56 3
AMMG 46.67 ± 8.53 10 85.05 ± 4.11 9 85.28 ± 6.19 9 85.97 ± 3.19 11 88.85 ± 5.15 12
AMMG,s 46.67 ± 8.53 28 84.63 ± 3.80 26 85.28 ± 6.19 27 86.01 ± 4.37 30 88.85 ± 5.15 36
AMMnc 46.67 ± 8.53 24 85.16 ± 4.39 26 84.77 ± 6.45 36 85.96 ± 4.50 72 87.57 ± 5.23 174
AMM1 51.47 ± 13.46 1 83.65 ± 3.89 2 87.51 ± 4.24 2 86.76 ± 4.07 2 87.83 ± 5.05 2.11
AMM10ran 56.92 ± 22.42 10 80.39 ± 6.36 11 85.89 ± 5.52 12 87.32 ± 3.17 13 87.81 ± 6.52 15

A
M

M
m

ax

AMMEMM 57.99 ± 8.96 10 76.31 ± 5.29 10 82.07 ± 4.47 11 86.99 ± 7.23 11 87.08 ± 5.86 12
AMMMM 74.57 ± 18.16 10 75.32 ± 4.74 10 78.65 ± 7.93 11 88.84 ± 3.10 12 90.01 ± 5.50 13
AMMG 74.57 ± 18.16 32 78.06 ± 5.11 33 83.24 ± 6.54 35 89.98 ± 3.08 ↑ 38 88.41 ± 5.94 41
AMMG,s 74.57 ± 18.16 96 79.21 ± 4.58 98 83.36 ± 6.61 104 90.88 ± 3.11 ↑ 112 88.41 ± 5.94 121
AMMnc 74.57 ± 18.16 47 75.80 ± 5.14 50 80.22 ± 6.95 61 88.05 ± 2.47 99 89.19 ± 5.45 198
AMM1 65.53 ± 17.30 10 77.29 ± 6.63 9 82.10 ± 7.95 10 85.45 ± 3.31 11 89.01 ± 7.02 12
AMM10ran 65.05 ± 16.59 85 79.60 ± 6.56 82 78.56 ± 4.77 88 88.44 ± 3.22 94 89.37 ± 6.67 109

SV
M alter-∝ 43.07 ± 6.05 22 44.58 ± 4.95 24 69.24 ± 4.99 27 67.72 ± 12.25 55 59.67 ± 7.01 49

conv-∝ 36.67 ± 7.44 1316 44.55 ± 9.58 1280 57.84 ± 5.98 1788 65.93 ± 3.90 887 47.58 ± 11.29 1287
Oracle 90.07 ± 5.04 <1 89.99 ± 4.23 <1 90.08 ± 5.50 <1 89.42 ± 6.34 <1 90.22 ± 5.17 <1

Table 4.12: ionosphere

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 57.91 ± 22.04 <1 59.05 ± 10.46 <1 51.43 ± 17.22 <1 45.39 ± 23.81 <1 61.30 ± 17.86 <1
MM 77.45 ± 6.14 <1 78.97 ± 3.54 <1 79.85 ± 4.14 <1 82.74 ± 2.11 1 87.45 ± 3.57 1
LMMG 77.45 ± 6.14 3 78.34 ± 2.82 3 81.93 ± 3.81 3 87.52 ± 2.71 5 90.43 ± 3.20 6
LMMG,s 77.45 ± 6.14 9 78.34 ± 2.82 8 83.87 ± 3.63 9 87.71 ± 2.56 13 91.06 ± 3.00 14
LMMnc 77.45 ± 6.14 31 78.43 ± 2.74 31 80.02 ± 4.02 35 83.50 ± 2.46 54 88.10 ± 3.57 122
InvCal 33.74 ± 24.95 4 36.46 ± 5.27 4 72.54 ± 5.79 4 61.89 ± 6.25 4 59.91 ± 8.79 4

A
M

M
m

in

AMMEMM 81.07 ± 8.12 2 78.56 ± 8.66 2 90.56 ± 3.44 2 92.08 ± 1.78 2 93.14 ± 2.04 3
AMMMM 75.64 ± 5.02 2 68.54 ± 4.90 2 87.10 ± 4.16 2 92.66 ± 1.99 3 93.50 ± 1.93 3
AMMG 75.64 ± 5.02 6 69.27 ± 5.69 7 87.57 ± 4.48 8 92.45 ± 1.89 10 93.59 ± 1.83 11
AMMG,s 75.64 ± 5.02 19 69.27 ± 5.69 22 87.86 ± 4.62 23 91.04 ± 3.82 30 92.97 ± 1.58 32
AMMnc 75.64 ± 5.02 34 68.49 ± 4.86 35 88.33 ± 5.17 39 91.26 ± 3.98 59 93.70 ± 2.09 127
AMM1 74.49 ± 6.08 1 68.66 ± 4.92 1 90.60 ± 3.18 2 92.41 ± 1.58 2 92.95 ± 1.75 2
AMM10ran 76.42 ± 4.80 12 75.75 ± 5.07 16 92.59 ± 0.22 18 92.15 ± 1.44 15 92.46 ± 1.79 19

A
M

M
m

ax

AMMEMM 76.02 ± 12.70 4 78.42 ± 14.14 5 87.87 ± 1.94 5 87.88 ± 3.29 6 90.71 ± 2.79 8
AMMMM 75.31 ± 13.69 5 87.22 ± 3.13 5 87.43 ± 2.59 6 88.85 ± 2.39 6 90.29 ± 2.47 9
AMMG 75.31 ± 13.69 15 73.91 ± 16.06 17 87.89 ± 1.97 17 87.98 ± 3.27 21 90.29 ± 2.47 28
AMMG,s 75.31 ± 13.69 44 67.48 ± 16.70 50 87.89 ± 1.97 51 87.98 ± 3.27 63 90.18 ± 3.26 82
AMMnc 75.31 ± 13.69 43 82.97 ± 8.05 45 87.85 ± 2.00 49 88.91 ± 2.41 70 90.29 ± 2.47 144
AMM1 77.35 ± 13.61 4 70.14 ± 17.19 5 84.17 ± 2.66 5 89.12 ± 2.31 6 90.94 ± 3.06 8
AMM10ran 72.39 ± 14.33 36 82.49 ± 9.32 47 87.44 ± 1.52 47 85.79 ± 4.54 50 90.87 ± 2.53 69

SV
M alter-∝ 40.88 ± 5.80 21 30.17 ± 7.47 23 68.26 ± 6.40 26 58.84 ± 21.21 33 37.17 ± 17.48 48

conv-∝ 77.72 ± 6.23 3624 72.28 ± 8.88 2292 36.21 ± 8.38 2328 45.01 ± 14.91 2481 70.49 ± 5.59 2306
Oracle 93.80 ± 1.06 <1 93.83 ± 1.67 <1 93.89 ± 1.89 <1 93.83 ± 1.62 <1 94.00 ± 1.42 <1

Table 4.13: vertebral column
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algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 54.32 ± 8.79 <1 45.47 ± 15.63 <1 46.88 ± 6.06 1 55.20 ± 18.03 1 53.93 ± 10.59 1
MM 94.56 ± 2.04 1 95.37 ± 2.62 2 95.65 ± 0.85 2 96.33 ± 1.19 2 96.74 ± 1.50 2
LMMG 94.56 ± 2.04 7 95.93 ± 2.47 8 95.87 ± 1.12 8 96.41 ± 1.51 9 96.94 ± 1.67 10
LMMG,s 94.56 ± 2.04 20 96.03 ± 2.42 22 96.00 ± 1.18 23 96.38 ± 1.99 25 96.81 ± 2.09 28
LMMnc 94.56 ± 2.04 28 95.83 ± 2.34 31 95.71 ± 0.92 43 96.23 ± 1.58 85 96.81 ± 1.50 234
Invcal 94.85 ± 1.71 4 73.10 ± 2.21 4 77.86 ± 4.92 4 26.74 ± 6.82 4 79.77 ± 6.25 4

A
M

M
m

in

AMMEMM 93.67 ± 1.84 2 95.04 ± 3.01 2 96.18 ± 0.78 2 96.43 ± 1.31 2 96.94 ± 1.62 3
AMMMM 93.48 ± 2.31 2 95.12 ± 2.89 3 96.10 ± 0.82 3 96.15 ± 1.31 4 97.30 ± 1.58 4
AMMG 93.48 ± 2.31 10 95.61 ± 1.90 12 95.92 ± 1.02 11 96.41 ± 1.12 13 97.36 ± 1.47 15
AMMG,s 93.48 ± 2.31 29 94.87 ± 3.02 33 95.34 ± 0.98 35 96.11 ± 1.30 39 97.36 ± 1.47 46
AMMnc 93.48 ± 2.31 32 95.38 ± 2.38 35 95.81 ± 1.01 46 96.03 ± 1.48 89 97.38 ± 1.45 238
AMM1 93.57 ± 1.99 2 94.32 ± 3.36 2 96.25 ± 0.66 2 96.17 ± 1.20 2 96.83 ± 1.42 2
AMM10ran 93.84 ± 2.23 11 94.59 ± 3.56 11 95.85 ± 0.97 12 96.63 ± 1.32 15 96.66 ± 1.70 18

A
M

M
m

ax

AMMEMM 91.68 ± 0.81 11 94.97 ± 2.24 12 94.94 ± 1 13 95.83 ± 1.36 14 96.60 ± 1.31 15
AMMMM 92.47 ± 0.38 12 93.43 ± 4.07 13 93.71 ± 1.34 14 95.40 ± 1.10 15 96.77 ± 1.31 17
AMMG 92.47 ± 0.38 40 94.34 ± 2.65 34 94.03 ± 0.81 43 95.65 ± 1.70 48 96.45 ± 1.52 53
AMMG,s 92.47 ± 0.38 124 94.22 ± 2.87 127 94.03 ± 0.81 132 96.01 ± 1.83 142 96.37 ± 1.39 160
AMMnc 92.47 ± 0.38 65 94.96 ± 3.48 66 94.07 ± 0.78 78 95.14 ± 1.18 124 96.74 ± 1.31 275
AMM1 91.60 ± 1.29 11 94.48 ± 2.14 12 94.34 ± 0.82 12 95.36 ± 1.56 13 96.54 ± 1.51 15
AMM10ran 90.49 ± 2.02 101 94.59 ± 2.85 103 94.19 ± 0.73 104 95.73 ± 1.83 112 96.21 ± 1.67 128

SV
M alter-∝ 51.58 ± 3.27 19 62.74 ± 4.27 21 60.88 ± 3.50 25 63.01 ± 9.51 33 41.87 ± 7.12 57

conv-∝ 5.63 ± 2.03 1848 47.22 ± 4.92 1807 19.62 ± 5.91 1855 57.54 ± 11.22 1598 46.27 ± 9.48 1281
Oracle 97.11 ± 1.31 <1 97.43 ± 2.25 <1 97.06 ± 0.87 <1 97.33 ± 1.38 <1 97.52 ± 1.49 <1

Table 4.14: vote (feature physician-fee-freeze was removed to make the problem more
difficult)

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 70.38 ± 20.39 <1 56.72 ± 29.85 <1 55.42 ± 20.70 <1 65.82 ± 21.45 <1 46.85 ± 16.71 <1
MM 66.45 ± 5.42 1 82.41 ± 6.76 1 85.28 ± 4.80 1 90.35 ± 3.73 1 95.57 ± 2.45 1
LMMG 66.45 ± 5.42 4 89.72 ± 3.73 5 90.69 ± 5.30 5 94.09 ± 3.45 5 97.74 ± 0.67 6
LMMG,s 66.45 ± 4.412 13 93.32 ± 2.94 13 92.68 ± 6.06 14 95.53 ± 2.40 15 97.69 ± 0.90 19
LMMnc 66.45 ± 5.42 9 84.00 ± 5.48 11 86.30 ± 4.18 18 91.10 ± 4.52 40 96.28 ± 2.06 116
Invcal 58.96 ± 5.77 6 81.38 ± 4.59 6 55.18 ± 9.59 6 63.07 ± 12.61 6 71.01 ± 18.19 6

A
M

M
m

in

AMMEMM 80.27 ± 18.08 1 90.33 ± 8.87 1 91.46 ± 10.59 1 88.97 ± 6.26 1 88.34 ± 22.79 2
AMMMM 61.84 ± 9.20 2 85.56 ± 7.20 1 88.70 ± 8.31 2 93.78 ± 9.12 2 98.66 ± 1.11 2
AMMG 61.84 ± 9.20 6 93.06 ± 7.88 7 93.42 ± 8.24 7 96.09 ± 8.18 7 99.33 ± 1.01 9
AMMG,s 61.84 ± 9.20 17 94.87 ± 5.68 18 93.00 ± 8.95 20 96.09 ± 8.18 21 99.33 ± 1.01 27
AMMnc 61.84 ± 9.20 10 87.03 ± 3.93 13 88.23 ± 7.90 20 97.49 ± 5.06 43 99.33 ± 1.01 119
AMM1 82.21 ± 11.39 <1 94.12 ± 6.34 1 99.60 ± 0.60 1 96.03 ± 7.57 1 97.03 ± 3.66 1
AMM10ran 58.75 ± 31.30 4 99.47 ± 0.68 5 99.52 ± 0.45 6 99.59 ± 0.54 7 98.95 ± 1.66 10

A
M

M
m

ax

AMMEMM 74.23 ± 32.62 3 85.52 ± 17.48 4 99.67 ± 0.74 5 98.09 ± 3.09 6 92.00 ± 11.55 7
AMMMM 88.23 ± 18.56 5 97.60 ± 2.40 4 87.42 ± 27.76 6 99.42 ± 0.79 7 98.61 ± 1.69 8
AMMG 88.23 ± 18.56 15 88.41 ± 20 15 100.00 ± 0.00 ↑ 19 99.63 ± 0.66 20 98.61 ± 1.69 25
AMMG,s 88.23 ± 18.56 44 79.11 ± 23.90 44 100.00 ± 0.00 ↑ 56 99.63 ± 0.66 59 98.61 ± 1.69 75
AMMnc 88.23 ± 18.56 19 85.44 ± 19.04 21 86.17 ± 27.19 32 99.36 ± 0.74 56 98.61 ± 1.69 135
AMM1 75.24 ± 21.10 3 80.45 ± 10.01 4 91.83 ± 14.63 5 91.79 ± 9.05 5 88.01 ± 9.78 7
AMM10ran 97.54 ± 1.55 30 96.80 ± 3.94 32 99.46 ± 0.82 41 99.21 ± 0.79 47 98.54 ± 1.66 58

SV
M alter-∝ 52.68 ± 2.54 14 36.53 ± 10.97 16 65.54 ± 2.26 19 29.15 ± 9.60 32 86.22 ± 11.93 44

conv-∝ 54.31 ± 4.63 831 70.23 ± 6.58 794 52.88 ± 13.86 840 55.60 ± 11.29 659 11.58 ± 7.84 495
Oracle 99.69 ± 0.52 <1 99.80 ± 0.44 <1 99.60 ± 0.43 <1 99.80 ± 0.44 <1 99.78 ± 0.33 <1

Table 4.15: wine
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4.13 References

To the best of our knowledge, the setting was originally introduced by Kuck and
de Freitas [2005], inspired by previous work on multiple instance learning with
threshold functions for Computer Vision [Kück et al., 2004]. The seminal work of
Kuck and de Freitas [2005] proposes a hierarchical graphical model that generates
labels consistent with the proportions. Training is performed in a fully Bayesian
fashion by MCMC sampling. Some scaling issues on following this approach are
highlighted by Quadrianto et al. [2009]. A similar but simpler graphical model is
learned via EM algorithm in Wager et al. [2015].

Somehow independently, Chen et al. [2006] and its follower Musicant et al. [2007]
offer a variety of standard machine learning methods such as Bayesian networks, en-
semble trees, KNNs, SVMs and neural networks designed to generate self-consistent
labels. Along this line, Hernández and Inza [2011]; Hernández-González et al. [2013]
rely respectively on naive Bayes and structure learning of Bayesian networks with
missing data. Other methods jointly exploit the proportions and geometrical as-
sumptions on the data, by mixing classification with clustering [Chen et al., 2009;
Stolpe and Morik, 2011; Cui et al., 2016]. An adaptation of latent discriminant anal-
ysis to LLP is given in Pérez-Ortiz et al. [2016].

It seems that the important contribution of Quadrianto et al. [2009] was initially
conceived with no connection with previous work until N. De Freitas and A. Smola
discussed the topic “while walking along the beach in Australia”2 at a Machine
Learning Summer School in 2008. This piece of work is central to the Thesis, since it
is the first published instance of Loss Factorization for weakly supervised learning,
with the related estimation of the mean operator. The paper also shows empirically
that the Mean Map algorithm outperforms multiple strong baselines as well as the
approach of Kuck and de Freitas [2005].

There are several SVM-based algorithms for LLP. Rüping [2010] propose to opti-
mize an inverted calibration function [Platt, 1999] by margin maximization, with the
objective of matching bag-wise average prediction with the given proportions. In-
stead, Yu et al. [2013] follow a more traditional formulation of SVMs, by augmenting
the search space with the latent labels. Two alternative approximations are proposed:
a convex relaxation, with better performance but hard to scale, and a more practical
alternating optimization similar to AMM. Yu et al. [2013] show how their implemen-
tation outperform most of other known methods at date. The success of Yu et al.
[2013] have inspired several SVM-based solutions [Wang et al., 2015; Ni et al., 2015;
Qi et al., 2016; Chen et al., 2016].

Deep neural networks have recently been used for LLP. Fan et al. [2014] solve a
density estimation problem with a restricted Boltzmann machines to learn a gener-
ative model. Li and Taylor [2015] formulate an alternating algorithm similar to Yu
et al. [2013] and our AMM, but utilizing a convolutional neural network as the core
model. A rather original insight is contained in the work of Kotzias et al. [2015], with
a specific application on sentiment analysis of sentences instead of documents. In a

2Excerpt from a workshop talk by Nando de Freitas at NIPS’15, Montreal.
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first phase, a convolutional network is trained for predicting document sentiments,
which is the level of aggregated supervision that is available; in a second phase, a
sentence embedding is obtained from the network by removing the top layer; finally,
the architecture is retrained with a loss penalizing mistakes at document level pre-
dictions with an additional manifold regularization. The sentence embedding step
is essential for constructing a suitable feature representation for the problem and,
importantly, it is learned from label proportions only.

Prior work on theory of LLP belongs to two main categories. The first is about
estimation guarantee of either the mean operator [Quadrianto et al., 2009] in RKHS
or the resulting classifier [Altun and Smola, 2006; Quadrianto et al., 2009]. Those
have already been discussed above. The second regards generalization bounds on
predicting the bag proportions. Yu et al. [2014b] introduce the framework of empiri-
cal proportion risk estimation, showing that it is possible to bound generalization error
of predicting bag proportions; in turn, the result is used to bound the more inter-
esting error on label prediction by the use of distributional assumptions on the bag
assignment process.

LLP has been studied in conjunction with domain adaptation in Ardehaly and Cu-
lotta [2016]. A model is learned from label proportions on the source domain and
used to generate label proportions for a target domain; a self-training process is re-
peated to adapt the model from source to target.

Finally, extension of the LLP setting have been recently proposed, where the su-
pervision is weaker but still represented by proportional quantities: learning from
positive-unlabeled proportions [Hernández-González et al., 2015, 2016], ballpark learning
[Hope and Shahaf, 2016], i.e. learning from bounds on the label proportions, learn-
ing from histograms and order statistics [Bhowmik et al., 2015]. The last setting is also
linked with the broad topic of data imputation with the help of auxiliary aggregated
information [Park and Ghosh, 2012, 2013] and with the ecological inference, presented
next.

4.13.1 Ecological inference

We conclude this literature review with a mention to a related yet fundamentally dif-
ferent learning scenario, which originated outside the Machine Learning community.
The problem deals with recovering information from aggregate data and thus share
the intent of learning from label proportions. Although, in contrast with the topic of
this Chapter, the objective is not to classify individual observations, but “disaggre-
gate” variables from an higher level group representation into constituent parts.

The iconic application is inferring electorate behavior: given turnout results for
several parties and proportions of some population strata, e.g. percentages of ethnic
groups, for many geographical regions such as counties, the aim is to recover contin-
gency tables for parties× groups for all those counties. In the language of probability
the problem is isomorphic to the following: given two random variables and their
respective marginal distributions — conditioned to another variable —, reconstruct
their conditional joint distribution. Let us simplify the problem in that the feature
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vector x and the label y are both scalar binary variables. As in LLP, the the problem
has another dimension, the one of bags j ∈ [n] which often stands for a geographical
descriptor. The ecological inference problem is then summarized as: assuming to
know the marginals — conditioned to j — p(x|j) and p(y|j), can we infer the joint
distribution p(x, y|j)?

The ecological inference arises in a diversity of applied fields such as Economet-
rics [Cross and Manski, 2002; Cho and Manski, 2008], Sociology and Political Science
[King, 1997; King et al., 2004] and Epidemiology [Wakefield and Shaddick, 2006],
with a long history [Robinson, 1950]; interestingly, the Empirical Software Engineer-
ing community has also explored the idea [Posnett et al., 2011].

As with weak supervision, the problem is fundamentally under-determined and
any solution can only provide either loose deterministic bounds [Duncan and Davis,
1953; Cross and Manski, 2002; Cho and Manski, 2008] or needs to enforce additional
assumptions and prior knowledge on the data domain [King, 1997]. A decade ago,
the problem has witnessed a period of renaissance along with the publication of a
diversity of methods from the second family, mostly inspired by several models and
related distributional assumptions collected in the book of King et al. [2004]. In con-
trast, Judge et al. [2004] follow the road of a minimal subset of assumptions and
frame the inference as an optimization problem. The approach favors one solution
according to some information-theoretic solution, e.g. the Cressie-Read power di-
vergence, intended as an entropic measure of the joint distribution. Along this last
line of work, we have co-authored a new solution based on optimal transport [Villani,
2008] between marginal distributions as presented in Muzellec et al. [2017].

On the one hand, LLP is a strictly more ambitious problem than ecological in-
ference. In fact, in learning from label proportions — the marginals for y — the
prediction happens at the level of each individual. In contrast, the goal of ecological
inference is to “disaggregate” data into another, finer-grain level of representation,
the one of the bags. From this point of view, a solution for LLP can be used to in-
fer the unknown joint distributions. On the other hand, LLP is assuming a much
richer representation of the data as a starting point. Individual features vectors, e.g.
the individual demographics of voters, are not known and not necessary for solving
ecological inference. Yet it has been shown that such information can be beneficially
integrated into learning methods for ecological inference [Flaxman et al., 2015].



Chapter 5

Learning with noisy labels I: theory
for linear models

The Chapter specializes our approach to the problem of learning a classifier under
asymmetric label noise. The above theory and algorithms are reviewed to adapt to
this particular case of weak supervision. A novel estimator for the label sufficient
statistic is defined by its property of unbiasedness. We also characterize the whole
family of linear-odd losses by an approximate criterion of label noise robustness.
Simple experiments with simulated noise corroborate both theoretical and algorith-
mic statements.

5.1 Motivation

Large datasets used in training modern machine learning models are often affected
by label noise. The problem is pervasive for a simple reason: manual expert-labeling
of each instance at a large scale is not feasible and so researchers and practitioners
often resort to cheap but imperfect surrogates. Two such popular surrogates are
crowdsourcing using non-expert labelers and (especially for images) the use of a
search engine to query instances by a keyword, where it is assumed that the keyword
is a valid label for what is collected from the query [Fergus et al., 2010; Schroff et al.,
2011; Divvala et al., 2014; Krause et al., 2016]. Both approaches offer the possibility
to scale the acquisition of training labels. However, they invariably result in the
introduction of label noise, which may adversely affect model training. On top of
those issues, label noisy is intrinsic and virtually impossible to eliminate from many
data domains, because of inherent ambiguity and task misspecification [Misra et al.,
2016].

In the Thesis we adopt the nomenclature of Table 5.1. We focus on label noise that
is asymmetric, i.e. we work in the class-conditional noise setting of Natarajan et al.
[2013] . This is clearly a simplification of real-world information corruption, which
may also be instance dependent. Little is known about learning under such noise, with
few exceptions [Xiao et al., 2015; Ghosh et al., 2015; Menon et al., 2016].
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name assumption example of recent study

symmetric p(ỹ|y, x) = p(ỹ) van Rooyen et al. [2015]
asymmetric p(ỹ|y, x) = p(ỹ|y) Natarajan et al. [2013]
instance dependent no assumption Menon et al. [2016]

Table 5.1: Label noise types considered in literature.

5.2 Learning setting

In learning with asymmetric noisy labels (ALN), S̃ is a set of examples drawn from
a distribution D̃, which samples from D and flips labels at random. Each example
(xi, ỹi) is (xi,−yi) with probability at most 1/2 or it is (xi, yi) otherwise. The noise
rates are label dependent by (p+, p−) ∈ [0, 1/2)2 respectively for positive and neg-
ative examples. The marginal feature distribution is not affected by noise. In sum,
examples are drawn from the distribution:

p(x, ỹ) = p+ · p(y = 1|x)p(x) + p− · p(y = −1|x)p(x), (5.1)

with p+ = p(ỹ = −1|y = 1) and p− = p(ỹ = 1|y = −1).

5.3 Estimating the sufficient statistic and µSGD

The schema of the solution for this learning problem follows closely what we did in
the Chapter 4 for LLP and implements our two-step procedure: estimate the suffi-
cient statistic and solve ERM. The estimation step turns out to be much simpler in
this scenario. Although, notice that we work under the assumption of knowing the
noise rates (p+, p−). Towards a more realistic treatment, Chapter 6 will deal with the
estimation of those quantities as well.

We construct an estimator for the mean operator that is unbiased with respect
to the noisy distribution. The result builds on Natarajan et al. [2013, Lemma 1] that
provides a recipe for unbiased estimators of losses. Instead of estimating the whole `,
as consequence of the Factorization Theorem 18 we act on the sufficient statistic.

Theorem 52. The estimator defined as:

µ̂S
.
= ES

[
y− (p− − p+)
1− p− − p+

x
]

(5.2)

is unbiased, that is, its expectation over the noise distribution D̃ is the population mean
operator:

ED̃
[
µ̂S̃
]
= µD . (5.3)

The corresponding risk estimator R̂S ,`(θ)
.
= 1

2 RS2x ,`(θ) + a〈θ, µ̂S 〉 is also unbiased.

Proof in 5.7.1. We have thus obtained a good candidate as input for any algorithm
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Algorithm 8: µSGD for asymmetric noisy label

Input: S̃ , ` is a-lol, (p+, p−), λ > 0, T > 0
S2x ← {(xi, σ), i ∈ [m], ∀σ ∈ Y}
µ̂S̃ ← ES̃

[
y−(p−−p+)
1−p−−p+ x

]

θ̂← µSGD(S2x, µ̂S̃ , λ, T)
Output: θ̂

Algorithm 9: µSGD with L2 regularization
Input: S2x, µ, ` is a-lol, λ > 0, T > 0
θ0 ← 0
For any t = 1, . . . , T:

Pick i ∈ [|S2x|] uniformly at random
η ← 1/(λt)
Pick any v ∈ ∂`(yi〈θt, xi〉)
θt+1 ← (1− ηλ)θt − η(v + aµ/2)
θt+1 ← min

{
θt+1, θt+1/(

√
λ · ‖θt+1‖2)

}

Output: θT

implementing our two-step approach, like µSGD (Algorithm 9). But there is more.
On one hand, the estimators of Natarajan et al. [2013] may not be convex even when `
is so, but this is never the case with lols. In fact, `(x)− `(−x) = 2ax may be seen as
an alternative sufficient condition to Natarajan et al. [2013, Lemma 4] for convexity,
without asking for differentiability.

The estimator of Equation 5.2 is all we need for presenting a complete version
of the weakly supervised version of SGD given in Algorithm 8. We also restate
Algorithm 9 for the sake of readability. This is another example of implementation
of the Meta Algorithm 1, this time for ALN.

5.4 Generalization bounds

We now prove that any algorithm minimizing lols that uses the estimator in Equa-
tion 5.2 has a non-trivial generalization bound. We further assume that ` is Lipschitz.

Theorem 53. Consider the setting of Theorem 23, except that here θ̂ = argminθ∈H R̂S̃ ,`(θ).
Then for any δ > 0, with probability at least 1− δ:

RD,`(θ̂)− inf
θ∈H

RD,`(θ) ≤
√

2 + 1
2

XHL√
m

+

c(X, H)

√
1
m

log
(

2
δ

)
+

2|a|XH
1− p− − p+

√
d
m

log
(

2d
δ

)
. (5.4)
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Proof in 5.7.2. The complexity term is tighter than prior work. Natarajan et al.
[2013, Theorem 3] prove a factor of 2L/(1− p− − p+) that may even be unbounded
due to noise, while our estimate shows a constant of about 1.2 < 2 and it is noise free.
In fact, lols are such that noise affects only the linear component of the bound, as a
direct effect of Factorization. Although we are not aware of any other such results,
this is intuitive: the Rademacher complexity R(H ◦ S) is computed regardless of
sample labels and therefore is unchanged by label noise1. Furthermore, depending
on the loss, the effect of (limited) noise on generalization may also be negligible since
c(X, H) could be very large for losses like strongly convex.

The next Theorem comes in pair with Theorem 53: it holds regardless of algo-
rithm and (linear-odd) loss of choice. In particular, we demonstrate that every learner
enjoys a distribution-dependent property of robustness against ALN. No estimate of
µ is involved and hence the Theorem also applies to any naïve supervised learner on
S̃ via linear-odd losses. We first recall a strong notion of robustness from Manwani
and Sastry [2013]; van Rooyen et al. [2015].

Definition 54. Let (θ?, θ̃?) respectively be the minimizers of (RD,`(θ), RD̃,`(θ)) in H. ` is
said ALN robust if for any D, D̃:

RD,`(θ
?) = RD,`(θ̃

?) . (5.5)

The influential work of Long and Servedio [2010], together with van Rooyen et al.
[2015], settles the question of whether commonly used loss function can be robust to
label noise, in particular in the milder symmetric noise scenario. Rather negatively,
the literature concludes that no convex potentials2 is immune to such noise. Instead,
the already cited unhinged loss `(x) = 1− x, a linear loss, satisfies Equation 5.5 [van
Rooyen et al., 2015].

To study the lols under ASL, we take a more pragmatic point of view and extend
Definition 5.5 by the weaker formulation of ε-robustness.

Definition 55. In the context of Definition 54, ` is said ε-ALN robust if for any D, D̃:

RD̃,`(θ
?)− RD̃,`(θ̃

?) ≤ ε . (5.6)

The distance of the two minimizers is measured by `-risk under expected label
noise. 0-ALN robust losses are also ALN robust: in fact if RD̃,`(θ

?) = RD̃,`(θ̃
?) then

θ? ∈ argminθ RD̃,`(θ). And hence if RD̃,`(θ) has a unique global minimum, that is θ?.
More generally we have the following result.

Theorem 56. Assume {θ ∈ H : ||θ||2 ≤ H}. Then every a-lol is ε-ALN. That is:

RD̃,`(θ
?)− RD̃,`(θ̃

?) ≤ 4|a|H max{p+, p−}‖µD‖2 (5.7)

1Strictly speaking, this is true only considering the upper bound L · R(H ◦ S) for Lipschitz losses,
without dependency on `. In contrast, R(` ◦ H ◦ S) would depend on the sample labels.

2Namely, losses ` ∈ C1, convex, such that `(0) < 0 and `(x)→ 0 for x → ∞. Many convex potentials
are lols but not all. An example is e−x.
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Figure 5.1: Behavior of Theorem 56 on synthetic data. Definition of the axes within
the text.

Proof in 5.7.3. The reader might question the bound for the fact that the quantity
on the right-hand side can change by rescaling µD by X, i.e. the max L2 norm of
observations in the space X . Although, such transformation would affect `-risks on
the left-hand side as well, balancing the effect. With this in mind, we formulate the
result without making explicit dependency on X. Unlike Theorem 53, this bound
holds in expectation over the noisy risk RD̃,`. Its shape depends on the population
mean operator, a distribution-dependent quantity, which empirical approximation is
readily available by Equation 5.2. There are two immediate corollaries.

Corollary 57. If ‖µD‖2 = 0 then every lol is ALN for any D̃.

Corollary 58. Suppose additionally that ` is once differentiable and γ-strongly convex. Then:

∥∥θ? − θ̃?
∥∥2

2 ≤
2ε

γ
. (5.8)

Proofs in 5.7.4. When ‖µD‖2 = 0, we obtain optimality for all lols. Notice
that this is not necessarily a condition detrimental to learning. In fact, as remarked
in Lemma 28, ‖µD‖2 = 0 does not implies CovD [x, y] = 0. The second corollary
goes further, limiting the minimizers’ distance when losses are differentiable and
strongly convex. But even more generally, under some compactness assumptions on
the domain of `, Theorem 56 tells us more: in the case RD̃,`(θ) has a unique global
minimizer, the smaller ‖µD‖2, the closer the minimizer on noisy data θ̃? will be to the
minimizer on clean data θ?. Therefore, assuming an efficient algorithm that computes
a model not far from the global optimum θ̃?, that will be not far from θ? either. This
is true in spite of the presence of local minima and/or saddle points.

Let us compare the significance of Theorem 56 with what is known in literature.
Long and Servedio [2010] prove that no convex loss is noise robust, that is, 0-ALN
robust. This is not a contradiction. To show the negative statement, the authors craft
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a case of D breaking all such losses. In fact that choice of D does not meet optimality
in our bound, because:

‖µD‖2 =
1
4
(18γ2 + 6γ + 1) > 0 , (5.9)

with γ ∈ (0, 1/6). The worst-case result of Long and Servedio [2010], like any
extreme-case argument, should be handled with care. It does not give the big picture
for all data we may encounter in the real world, but only the most pessimistic. We
present such a global view which appears better than expected: learning from noisy
data does not necessarily reduce convex losses to a singleton [van Rooyen et al., 2015]
but depends on the data at hand — via the mean operator — for a broad set of losses.

We also compare our ε-ALN robustness with a robustness bound proposed by
Ghosh et al. [2015]. In the same setting as Definition 54:

RD,`(θ̃
∗) ≤ 1

1− 2 max(p−, p+)
RD,`(θ

∗) . (5.10)

While relating the (non-noisy) `-risks, this bound is not data dependent and may not
be informative for high noise rates.

Finally, Manwani and Sastry [2013] give a sufficient condition for loss function to
be ALN robust (Definition 54):

`(x) + `(−x) = const ⇒ 0-ALN (5.11)

Quite surprisingly, Loss Factorization also marries two opposite views in one for-
mula:

`(x) =
1
2
( `(x) + `(−x)︸ ︷︷ ︸

=const ⇒ 0-ALN

+ `(x)− `(−x)︸ ︷︷ ︸
=ax ⇒ ε-ALN

) (5.12)

As a by product, we confirm the peculiar role of unhinged loss, being the only func-
tion — modulo linear transformation — that satisfies both conditions.

5.5 Experiments

We begin by building a toy planar dataset to probe the behavior of Theorem 56. It is
made of four observations: (0, 1) and (φ/3, 1/3) three times, with the first example
the only negative, repeated 5 times. We consider this the distribution D so as to
calculate ‖µD‖2 = φ2/4. We fix p+, p− = 0.2 = p and control φ to measure the
discrepancy dnoisy

.
= RD̃,`(θ

?)− RD̃,`(θ̃
?), its counterpart dclean computed on D, and

how the two minimizers “differ in sign” by dmodels
.
= 〈θ?, θ̃?〉/‖θ?‖2‖θ̃?‖2. The same

simulation is run varying the noise rates with constant φ = 10−4. We learn with
square loss and λ = 10−6. Results are in Figure 5.1. The closer the parameters to 0,
the smaller dclean − dnoisy, while they are equal when each parameter is individually
0. dmodels is negligible, which is good news for the 01-risk on sight.
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Figure 5.2: How mean operator and noise rate condition risks. dclean
.
= RD,`(θ

?)−
RD,`(θ̃

?).

The next results are obtained by Algorithm 8 on UCI data. We learn with logistic
loss, without model intercept and set λ = 10−6 and T = 4 · 2m (4 epochs). We mea-
sure dclean and RD,01, injecting symmetric label noise p ∈ [0, 0.45) and averaging over
25 runs. Again, we consider the whole distribution so as to play with the ingredients
of Theorem 56. Figure 5.2a confirms how the combined effect of p‖µD‖2 can explain
most variation of dclean. While this is not strictly implied by Theorem 56 that only
involves dnoisy, the observed behavior is expected. A similar picture is given in Figure
5.2b which displays the true risk RD,01 computed on the minimizer θ̃? of S̃ . From
5.2a and 5.2b we also deduce that large ‖µD‖2 is a good proxy for generalization with
linear classifiers; see the relative difference between points at the same level of noise.
Finally, we have also monitored µD̃. Figure 5.2c shows that large ‖µD̃‖2 indicates
small dclean as well. This remark can be useful in practice, when the norm can be
estimated from S̃ , as opposite to p and µD, and used to anticipate the effect of noise
on the task at hand.

We conclude with a systematic study of hold-out error of µSGD. The same datasets
are now split in 1/5 test and 4/5 training sets once at random. In contrast with the
previous experimental setting we perform cross-validation of λ ∈ 10{−3,...,+3} on 5-
folds in the training set. We compare with vanilla SGD run on corrupted sample S̃
and measure the gain from estimating µ̂S̃ . The other parameters l, T, λ are the same
for both algorithms; the learning rate η is untouched from Shalev-Shwartz et al.
[2011] and not tuned for µSGD. The only differences are in input and gradient up-
date. Table 5.2 reports test error for SGD and its difference with µSGD, for a range
of values of (p−, p+). µSGD beats systematically SGD with large noise rates, and
yet performs in pair under low or null noise. Interestingly, in the presence of very
intense noise p+ ≈ .5, µSGD still learns sensible models and improves up to 55%
relatively to the error of SGD, which is often doomed to random guess.

5.6 Discussion

In this Chapter we have shown that both theoretical analysis and algorithms are
easily adaptable to the case of noisy labels, granted that we have access of a good
estimator of the label sufficient statistic. In this context, we have also derived a
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general property of label noisy robustness for linear-odd losses. The next Chapter
discusses some practical open issues, in particular the restriction to linear models
and the strong hypothesis of known noise rates.
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5.7 Appendix: proofs

5.7.1 Proof of Theorem 52

Natarajan et al. [2013, Lemma 1] provide an unbiased estimator for a loss `(x) com-
puted on x of the form:

ˆ̀(y〈θ, xi〉) .
=

(1− p−y) · `(〈θ, xi〉) + py · `(−〈θ, xi〉)
1− p− − p+

. (5.13)

We apply the Lemma for estimating the mean operator instead. We are allowed to
do so by the very result of the Factorization Theorem, since the noise corruption
has only an effect on the linear-odd term of the loss. The estimator of the sufficient
statistic of a single example yx is:

ẑ .
=

1− p−y + py

1− p− − p+
yx (5.14)

=
1− (p− − p+)y

1− p− − p+
yx (5.15)

=
y− (p− − p+)
1− p− − p+

x , (5.16)

and its average, i.e. the mean operator estimator, is:

µ̂S
.
= ES

[
y− (p− + p+)
1− p− − p+

x
]

, (5.17)

such that in expectation over the noisy distribution it holds ED̃ [ẑ] = µD. Moreover,
the corresponding risk estimator R̂ enjoys the same unbiasedness property. In fact:

R̂D̃,`(θ) =
1
2

RD2x ,`(θ) + ED̃ [a〈θ, ẑ〉] (5.18)

=
1
2

RD2x ,`(θ) + a〈θ, µ̂D̃〉 (5.19)

=
1
2

RD2x ,`(θ) + a〈θ, µD〉 (5.20)

= RD,`(θ) , (5.21)

by using the independence from labels, hence from noise, of RD2x ,`.

5.7.2 Proof of Theorem 53

This is a version of Theorem 23 applied to ALN. The two results differ in three
elements. First, we consider the generalization property of a minimizer θ̂ that is
learned on the corrupted sample S̃ . Second, the minimizer is computed on the
basis of the unbiased estimator of µ̂S̃ and not barely by the average µS̃ . Third, as
a consequence, Lemma 27 is not valid in this scenario. Therefore, we first prove
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a version of the bound for the mean operator norm discrepancy while considering
label noise.

Lemma 59. Suppose Rd ⊇ X = {x : ‖x‖2 ≤ X < ∞} be the observations space. Let S̃ is a
learning sample affected by ALN with noise rates (p+, p−) ∈ [0, 1/2)2. Then for any δ > 0
with probability at least 1− δ:

∥∥µ̂D̃ − µ̂S̃
∥∥

2 ≤
X

1− p− − p+
·
√

d
m

log
(

d
δ

)
. (5.22)

Proof. Let S̃ and S̃ ′ be two learning samples from the corrupted distribution D̃ that
differ for only one example (xi, ỹi) 6= (xi′ , ỹi′). Let first consider the one-dimensional
case. We refer to the k-dimensional component of µ with µk. For any S̃ , S̃ ′ and any
k ∈ [d] it holds:

∣∣∣µ̂k
S̃ − µ̂k

S̃ ′
∣∣∣ = 1

m

∣∣∣∣
(

ỹi − (p− − p+)
1− p− − p+

)
xk

i −
(

ỹi′ − (p− − p+)
1− p− − p+

)
xk

i′

∣∣∣∣ (5.23)

=
1
m

∣∣∣∣∣
ỹixk

i
1− p− − p+

− ỹi′xk
i′

1− p− − p+

∣∣∣∣∣ (5.24)

≤ X
m(1− p− − p+)

|ỹi − ỹi′ | (5.25)

≤ 2X
m(1− p− − p+)

. (5.26)

This satisfies the bounded difference condition of McDiarmid’s inequality, which let
us write for any k ∈ [d] and any ε > 0 that:

P
(∣∣∣µ̂k

D − µ̂k
S
∣∣∣ ≥ ε

)
≤ exp

(
−(1− p− − p+)2 mε2

2X2

)
(5.27)

and the multi-dimensional case, by union bound:

P
(
∃k ∈ [d] :

∣∣∣µ̂k
D − µ̂k

S
∣∣∣ ≥ ε

)
≤ d exp

(
−(1− p− − p+)2 mε2

2X2

)
. (5.28)

Then by negation:

P
(
∀k ∈ [d] :

∣∣∣µ̂k
D − µ̂k

S
∣∣∣ ≤ ε

)
≥ 1− d exp

(
−(1− p− − p+)2 mε2

2X2

)
, (5.29)

which implies that for any δ > 0 with probability 1− δ:

X
(1− p− − p+)

√
2
m

log
(

d
δ

)
≥ ‖µ̂D − µ̂S‖∞ ≥ d−1/2 ‖µD − µS‖2 . (5.30)

This concludes the proof.
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The proof of Theorem 53 follows the structure of Theorem 23’s and elements
of Theorem 3 of Natarajan et al. [2013]’s. Let θ̂ = argminθ∈H R̂D̃,`(θ) and θ? =
argminθ∈H RD,`(θ). We have:

RD,`(θ̂)− RD,`(θ
?) = R̂D̃,`(θ̂)− R̂D̃,`(θ

?) (5.31)

=
1
2

RD2x ,`(θ̂) + a〈θ̂, µ̂D̃〉 −
1
2

RD2x ,`(θ
?)− a〈θ?, µ̂D̃〉 (5.32)

=
1
2
(

RD2x ,`(θ̂)− RD2x ,`(θ
?)
)
+ a〈θ̂− θ?, µ̂D̃〉 (5.33)

=
1
2
(

RS2x ,`(θ̂)− RS2x ,`(θ
?)
)
+ a〈θ̂− θ?, µ̂D̃〉 (5.34)

+
1
2

(
RD2x ,`(θ̂)− RS2x ,`(θ̂)− RD2x ,`(θ

?) + RS2x ,`(θ
?)
) }

A1 .

(5.35)

Step 5.31 is due to unbiasedness. Again, rename Line 5.35 as A1, which this time
is bounded directly by Theorem 22. Next, we proceed as within the proof of Theorem
22 but now exploiting the fact that 1

2 RS2x ,`(θ) = R̂S̃ ,`(θ)− a〈θ, µ̂D̃〉 :

RD,`(θ̂)− RD,`(θ
?) ≤ R̂S̃ ,`(θ̂)− R̂S̃ ,`(θ

?)
︸ ︷︷ ︸

A2

+ a〈θ̂− θ?, µ̂D̃ − µ̂S̃ 〉︸ ︷︷ ︸
A3

+A1 . (5.36)

A2 is never more than 0 because θ̂ is the minimizer of R̂S̃ ,`(θ). From the Cauchy-
Schwarz inequality and bounded models it holds true:

A3 ≤ |a|
∥∥∥θ̂− θ?

∥∥∥
2
·
∥∥∥µ̂D̃ − µ̂S

∥∥∥
2
≤ 2|a|H

∥∥∥µ̂D̃ − µ̂S̃

∥∥∥
2

, (5.37)

for which we can call Lemma 59. Finally, by a union bound we get that for any δ > 0
with probability 1− δ:

RD,`(θ̂)− RD,`(θ
?) ≤

√
2 + 1
2

· XHL√
m

+ c(X, H)

√
1
m

log
(

2
δ

)
+

2|a|XH
1− p+ − p−

√
d
m

log
(

2d
δ

)
. (5.38)

5.7.3 Proof of Theorem 56

The proof draws ideas from Manwani and Sastry [2013]. Let us first assume sym-
metric noise, i.e. p+ = p− = p. For any θ we have:

RD̃,`(θ
?)− RD̃,`(θ) = (1− p) (RD,`(θ

?)− RD,`(θ))

+ p (RD,`(θ
?)− RD,`(θ) + 2a〈θ? − θ, µD〉) (5.39)

≤ (RD,`(θ
?)− RD,`(θ)) + 4|a|Hp‖µD‖2 (5.40)

≤ 4|a|Hp‖µD‖2 . (5.41)
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We are working with lols, which are such that `(x) = `(−x) + 2ax and therefore we
can take Step 5.39. Step 5.40 follows from Cauchy-Schwartz inequality and bounded
models. Step 5.41 is true because θ? is the minimizer of RD,`(θ). We have obtained a
bound for any θ and so for the supremum with regard to θ. Therefore:

sup
θ∈H

(
RD̃,`(θ

?)− RD̃,`(θ)
)
= RD̃,`(θ

?)− RD̃,`(θ̃) . (5.42)

To lift the discussion to asymmetric label noise, risks have to be split into losses for
negative and positive examples. Let RD+,` be the risk computed over the distribution
of the positive examples D+ and RD−,` the one of the negatives, and denote the mean
operators µD+ , µD− accordingly. Also, define the probability of positive and negative
labels in D as π± = P(y = ±1). The same manipulations for the symmetric case let
us write:

RD̃,`(θ
?)− RD̃,`(θ) = π− (RD−,`(θ

?)− RD−,`(θ)) + π+ (RD+,`(θ
?)− RD+,`(θ))

+ 2ap−π−〈θ? − θ, µD−〉+ 2ap+π+〈θ? − θ, µD+〉 (5.43)

≤ (RD,`(θ
?)− RD,`(θ)) + 2a〈θ? − θ, p−µD− + p+µD+〉 (5.44)

≤ 4|a|H · ‖p−π−µD− + p+π+µD+‖2 (5.45)

≤ 4|a|H max(p−, p+) · ‖π−µD− + π+µD+‖2 (5.46)

= 4|a|H max(p−, p+) · ‖µD‖2 . (5.47)

Then, we conclude the proof by the same argument for the symmetric case.

5.7.4 Proof of Corollaries 57 and 58

The first corollary is immediate by using the additional assumption. For the second,
if ` is once differentiable and γ-strongly convex in the θ argument, so is the risk RD̃,`
by composition with linear functions. Notice also that ∇RD̃,`(θ̃

?) = 0 because θ̃? is
the minimizer. Therefore:

ε ≥ RD̃,`(θ
?)− RD̃,`(θ̃

?) (5.48)

≥
〈
∇RD̃,`(θ̃

?), θ? − θ̃?
〉
+

γ

2

∥∥θ? − θ̃?
∥∥2

2 (5.49)

≥ γ

2

∥∥θ? − θ̃?
∥∥2

2 , (5.50)

(5.51)

which means that:

∥∥θ? − θ̃?
∥∥2

2 ≤
2ε

γ
. (5.52)
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5.8 References

Learning with noisy labels has been widely investigated in literature; we point any
interested reader to Frénay and Verleysen [2014] for a comprehensive survey.

From the theoretical standpoint label noise has been studied in two different
regimes, with vastly different conclusions. In the case of low-capacity (typically lin-
ear) models, even mild symmetric label noise can produce solutions that are akin to
random guessing [Long and Servedio, 2010]. On the other hand, the Bayes-optimal
classifier remains unchanged under symmetric [Natarajan et al., 2013; Menon et al.,
2015] and even instance dependent label noise [Menon et al., 2016] implying that
high-capacity models are robust to essentially any level of such noise, given a suffi-
cient number of samples. A caveat with the latter is that label noise adversely affects
the number of samples needed for learning [van Rooyen, 2015, Chapter 3].

In practice, and with more relevance for the mentioned low capacity models, a
common strategy for learning with noisy labels is to engineer a loss function that is
more suited to handle noise. Suppose one wishes to minimize a loss ` on clean data.
When the level of noise is known a priori — as we have assumed in this Chapter
—, the cited Natarajan et al. [2013] provide the general form of a noise corrected
loss ˆ̀ such that minimization of ˆ̀ on noisy data is equivalent (by unbiasedness) to
minimization of ` on clean data. The algorithms proposed in this Chapter can be seen
as an application of the method of Natarajan et al. [2013] for correcting linear-odd
losses. In the idealized case of symmetric label noise, for certain ` one in fact does
not need to know the noise rate: Manwani and Sastry [2013]; Ghosh et al. [2015] give
a sufficient condition for which ` is robust, and several examples of such robust non-
convex losses, while van Rooyen et al. [2015] show that the (convex) unhinged loss
is its own noise-corrected loss. Other proposed non-convex losses are in Masnadi-
Shirazi and Vasconcelos [2009]; Masnadi-Shirazi et al. [2010]; Ding and Vishwanathan
[2010].



Chapter 6

Learning with noisy labels II: deep
neural networks, multi-class, noise
estimation

In this Chapter, we greatly extend the discussion on label noise from Chapter 5. We
propose three important improvements to the idealized learning scenario presented
so far. First and foremost, the hypothesis space considered here is the one of deep
neural networks. Second, it follows naturally from this choice that we study multi-
class classification. Last but not least, we relax the assumption concerning the knowl-
edge of the noisy rates and formulate an estimator for multi-class asymmetric noise;
importantly, this last step let us formulate an end-to-end framework. The Chapter
is accompanied by a extensive experimental analysis on MNIST, IMDB, CIFAR-10,
CIFAR-100, other than on a large scale dataset of clothing images with a variety of
convolutional and recurrent architectures.

6.1 Motivation

The goal of this Chapter is to effectively train deep neural networks with modern
architectures under label noise. In Chapter 5 we discussed one strand of research for
combating label noise based on the idea of loss correction. This broad line of work
is strongly inspired by a theoretical analysis of this learning setting and is mostly
developed within the Machine Learning community. In Chapter 5 we actually inter-
pret this approach within the framework proposed by the Thesis, that is, sufficient
statistic estimation followed by learning with linear-odd losses. This interpretation
is grounded on the assumption of working with linear (or kernel) models.

Another strand of work is on ad-hoc deep architectures tailored to tolerate label
noise, primarily developed in Computer Vision [Mnih and Hinton, 2012; Reed et al.,
2015; Sukhbaatar et al., 2015; Xiao et al., 2015]. While some such approaches have
shown good experimental performance on specific domains, they lack a solid theo-
retical framework, and often need large a amount of clean labels to obtain acceptable
results — in particular, for pre-training or validating hyper-parameters [Xiao et al.,
2015; Krause et al., 2016; Reed et al., 2015].

119
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We unify the above research streams by introducing two alternative procedures
for loss correction. In doing so, this Chapter slightly departs from the main approach
proposed in the Thesis, with the aim of laying a bridge between those two areas.

Both procedures amount to simple linear algebra provided that we know a stochas-
tic matrix T summarizing the probability of one class being flipped into another
under noise. The first procedure, a multi-class extension of Natarajan et al. [2013]
applied to neural networks, is called “backward” correction as it multiplies the loss
by T−1. The second, inspired by Sukhbaatar et al. [2015], is named “forward” correc-
tion as it multiplies the network predictions by T. We prove that both procedures
enjoy formal guarantees of robustness with regard to the clean data distribution.
Since we only operate on the loss function, the approach is architecture independent
and not tied to a particular application domain, other than viable for any loss (even
non-linear-odd).

In real applications practitioners may be able to obtain a good estimate of T
by polishing a subset of the available training set [Xiao et al., 2015] — something
undoubtedly useful and often necessary for tuning hyper-parameters and testing the
model anyway. Nevertheless, we take a further step extending the noise estimator of
Menon et al. [2015] to the multi-class setting. Incidentally, we also prove that, when
the network only non-linearity is ReLU, the Hessian of the loss is not affected by
noise.

A clear motivation of this Chapter is to push for a practical application of our
formal work on label noise. We apply our loss corrections to image recognition on
MNIST, CIFAR-10, CIFAR-100 and sentiment analysis on IMDB; we simulate corrup-
tion by artificially injecting noise on the training labels. In order to show that no
architectural choice is the secret ingredient of our robustification recipe, we exper-
iment with a variety of network modules: convolutions and pooling [LeCun et al.,
1998], dropout [Srivastava et al., 2014], batch normalization [Ioffe and Szegedy, 2015],
word embedding and residual units [He et al., 2016a,b]. Additional tests on LSTM
[Hochreiter and Schmidhuber, 1997] confirms that the procedures can be seamlessly
applied to recurrent neural networks as well. Comparisons with non-corrected losses
and several known methods confirm robustness of our two procedures, with the for-
ward correction dominating the backward. Unsurprisingly, the noise estimator is
the bottleneck in obtaining near-perfect robustness, yet in most experiments our ap-
proach is often the best compared to prior work. Finally, we experiment with the 1M
clothing images dataset of Xiao et al. [2015], establishing a new state of the art.

6.2 Learning setting

In supervised c-class classification, we have a feature space X ⊆ Rd and a label space
Y = {ei : i ∈ [c]}. Note that each y only has one non-zero value at the coordinate
corresponding to the underlying label.

A n-layer neural network comprises a transformation h : X → Rc, where h =
(h(n) ◦ h(n−1) ◦ · · · ◦ h(1)) is the composition of a number of intermediate transforma-
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tions, the layers, defined by:

(∀i ∈ [n− 1]) h(i)(z) = σ(W(i)z + b(i)) ,

h(n)(z) = W(i)z + b(i) .

where W(i) ∈ Rd(i)×d(i−1)
and b(i) ∈ Rd(i) are parameters to be estimated1, and σ is any

activation function that acts coordinate-wise, such as the rectified linear unit (ReLU)
σ(x)i = max(0, xi). Observe that the final layer applies a linear projection, unlike all
preceding layers. To simplify notation, we write:

(∀i ∈ [n]) x(i) .
= h(i)(x(i−1)),

with the base case x(0) .
= x, so that e.g. x(1) is exactly the representation in the

first layer. Without loss of generality, we assume all layers to be fully connected, or
dense; for example, convolutions can be represented by dense layers with shared
sparse weights. The coordinates of h(x) represent the relative weights that the model
assigns to each class i ∈ [c] to be predicted. The predicted label is thus simply
y(x) = arg maxi∈[c] hi(x).

In the training phase, the output of the final layer is contrasted with the true label
y via two steps. First, h(·) passes through the softmax function ehi(x)/ ∑c

k=1 ehk(x). The
softmax output may be interpreted as the vector of class-wise probabilities living in
the simplex ∆c−1, and hence we may denote it by p(y|x). Next, we measure the
discrepancy between label y = ei and network’s output by a loss function ` : Y ×
[0, 1]c → R, given for example by the cross-entropy:

`(ei, h(x)) = −(ei)> log p(y|x) = − log p(y|x)i . (6.1)

With some abuse of notation, we also define the loss in a vector form computed on
every possible label:

`(h(x)) =
(
`(e1, h(x)), . . . , `(ec, h(x))

)>
∈ Rc . (6.2)

Cross-entropy is essentially a multi-class version of logistic loss when we encode the
labels for each class in {0, 1} instead of {±1}. In this Chapter, formal results hold
under very mild conditions on generic loss functions. We do not assume to work
with linear-odd losses, unless specified as in Theorem 64. Also, notice that here a
loss ` with a single argument is not a margin loss (Definition 2), but it is a notational
shortcut to denote losses in vector form in the multi-class setting.

We update the setting of asymmetric label noise of Chapter 5 to multi-class. Each
label y in the training set is flipped to ỹ ∈ Y with probability p(ỹ|y). Denote by
T ∈ [0, 1]c×c the noise transition matrix specifying the probability of one label being
flipped to another, so that ∀i, j Tij = p(ỹ = ej|y = ei). The matrix is row-stochastic
and not necessarily symmetric across the classes. We aim to modify a loss ` so as to

1Here, d(0) = d, the original feature dimensionality, and d(n) = c, the label dimensionality.
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make it robust to label noise; in fact, this is possible if T is known.

6.3 Loss correction procedures

6.3.1 The backward correction

We can build an unbiased estimator of the loss function in the same sense of Theorem
52. The corrected loss under expected label noise equals the original one computed on
clean data. This property is stated in the next Theorem, a multi-class generalization
of the already cited Lemma 1 Natarajan et al. [2013]. The Theorem is also a particular
instance of the more abstract [van Rooyen, 2015, Theorem 3.2].

Theorem 60. Suppose that the noise matrix T is non-singular. Given a loss `, define the
backward corrected loss as:

`←(h(x)) = T−1`(h(x)) . (6.3)

Then, the loss correction is unbiased, i.e., its expectation under label noise is exactly the loss:

(∀y = ei) Ep(ỹ|y) `
←(h(x))i = `(h(x))i , (6.4)

and therefore the minimizers are the same:

argmin
h

ED̃ `←(y, h(x)) = argmin
h

ED `(y, h(x)) . (6.5)

Proof in 6.7.1. The corrected loss is effectively a linear combination of the loss
values for each observable label, which coefficients are due to the probability that
T−1 attributes to each possible true label y, given the observed one ỹ. Intuitively, we
are “going one step back” in the noise process described by the Markov chain T. The
corrected loss is differentiable — although not always non-negative — and can be
minimized with any off-the-shelf algorithm for back-propagation. Although in prac-
tice T would be invertible almost surely, its condition number may be problematic.
A simple solution is to mix T with the identity matrix before inversion; this may be
seen as taking a more conservative noise-free prior.

6.3.2 The forward correction

Alternatively, we can correct the model predictions. Following Sukhbaatar et al.
[2015], we start by observing that a neural network learned with no loss correction
would result in a predictor for noisy labels p(ỹ|x). We can make explicit the depen-
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dency on T. For instance, with cross-entropy we have:

`(ei, h(x)) = − log p(ỹ = ei|x) (6.6)

= − log ∑
j∈[c]

p(ỹ = ei|y = ej) p(y = ej|x) (6.7)

= − log ∑
j∈[c]

Tji p(y = ej|x) , (6.8)

or in matrix form `(h(x)) = − log T>p(y|x) . This loss compares the noisy label
ỹ to averaged noisy prediction corrupted by T. We call this procedure “forward”
correction.

In order to analyze its behavior, we first need to recall definition and properties of
a new family of losses, named proper composite [Reid and Williamson, 2010, Section
4]. This is an additional requirement with respect to properness of Definition 12.
Many losses are said to be composite, in the sense that they can be expressed by the
aid of an link function.

Definition 61. A loss `ψ is composite with link function ψ : ∆c−1 → Rc, invertible, if it
can be written as:

`ψ(y, h(x)) = `(y, ψ−1(h(x))) . (6.9)

Cross-entropy and square are examples of proper composite losses. In the case
of cross-entropy, the softmax is the inverse link function. When composite losses are
also proper, their minimizer assumes the particular shape of the link function applied
to the class probability:

argmin
h

ED `ψ(y, h(x)) = ψ(p(y|x)) . (6.10)

An intriguing robustness property holds for forward correction of proper composite
losses.

Theorem 62. Suppose that the noise matrix T is non-singular. Given a proper composite
loss `ψ, define the forward loss correction as:

`→ψ (h(x)) = `(T>ψ−1(h(x))) . (6.11)

Then, the minimizer of the corrected loss under the noisy distribution is the same as the
minimizer of the original loss under the clean distribution:

ψ(p(y|x)) = argmin
h

ED̃ `→ψ (y, h(x)) (6.12)

= argmin
h

ED `ψ(y, h(x)) . (6.13)

2Symmetric proper losses of Chapter 4 are also proper composite, with link function equal to the
derivative of the generator φ. See Nock and Nielsen [2009] and Reid and Williamson [2010] for details.
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Algorithm 10: Robust two-stage training

Input: the noisy training set S̃ , any loss `
If T is unknown:

Train a network h(x) on S̃ with loss `
Obtain an unlabeled sample SX
Estimate T̂ by Equations (6.15)-(6.16) on SX

Train the network h(x) on S̃ with loss `← or `→

Output: h(·)

Proof in 6.7.2. The result expresses a weaker property with respect to unbiased-
ness of Theorem 60. Robustness applies to the minimizer only: the model learned
by forward correction is the minimizer over the clean distribution. Yet, Theorem 62
guarantees noise independence without explicitly inverting the noise process, but it
does it “behind the scenes” by a “de-noising” link function. This turns out to be an
important factor in practice, as shown in Section 6.5 experimentally and discussed in
Section 6.6.

6.3.3 Estimating the noise rates

A clear limitation of the above procedures is that they require knowing T. In
most applications, the matrix T would be unknown and needs to be estimated. We
present here an extension of the noise estimator of Menon et al. [2015]; Liu and Tao
[2016] to the multi-class settings. The estimator is derived under two assumptions.

Theorem 63. Assume p(x, y) is such that:

(i) there exist “perfect examples” of each of class j ∈ [c], in the sense that:

(∃x̄j ∈ X ) : p(x̄j) > 0∧ p(y = ej|x̄j) = 1.

(ii) given sufficiently many corrupted samples, h is rich enough to model p(ỹ|x) accurately.

It follows that:

∀i, j ∈ [c], Tij = p(ỹ = ej|x̄i) . (6.14)

Proof in 6.7.3. Rather surprisingly, Theorem 63 tells us that we can estimate each
component of matrix T just based on noisy class probability estimates, that is, the output
of the softmax of a network trained with noisy labels. In particular, let SX be any set
of features vectors. This can be taken from S itself, but not necessarily: we do not
require this sample to have any label at all and therefore whenever more unlabeled
samples are easy to obtain from the same distributions; they could be used in place
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loss correction ED̃ Hessian of ED̃
` - no guarantee unchanged
`← T−1· unbiased estimator of ` unchanged
`→ T· same minimizer of ` no guarantee

Table 6.1: Qualitative comparison of loss corrections.

of S . We can approximate T with two steps:

x̄i = argmax
x∈SX

p(ỹ = ei|x) (6.15)

T̂ij = p(ỹ = ej|x̄i) . (6.16)

In practice, assumption (1) of Theorem 63 might hold true when SX is large
enough. Assumption (2) is more difficult to justify: we require the network to per-
fectly model the probability of the noisy labels. Although, in the experiments we can
often recover T close to the ground truth and find that small estimation errors have
a mild, not catastrophic effect on the quality of the correction.

Algorithm 10 summarizes the end-to-end approach. If we know T, for example by
cleaning manually a subset of training data, we can train with `← or `→. Otherwise,
we first have to train the network with ` on noisy data, and obtain from it estimates
of p(ỹ|x) for each class via the output of the softmax. After training T̂ is computable
in O(c2 · |SX|). Finally, we re-train with the corrected loss, while potentially utilizing
the first network to help initializing the second one.

6.4 Noise free Hessians via ReLU

We now present a result of independent interest in the context of label noise. The
ReLU activation function appears to be a good fit for an architecture in our noise
model, since is brings the particular convenience that the Hessian of the loss does not
depend on noise, and hence the local curvature is left unchanged. At the same time, we
are assured that backward correction by T — or any arbitrarily bad estimator of the
matrix — has no impact on those second order properties of the loss — something
that does not hold for the forward correction though. We stress the fact that other
activation functions like the sigmoid do not share this guarantee. The proof in 6.7.4
makes use of the Factorization Theorem 18.

Theorem 64. Assume ` is lol and all network activation functions are ReLUs. Then, the
Hessian of ` does not change under noise. Moreover, the Hessians of `← and ` are the same
for any T.

Theorem 64 does not provide any assurance on minima: indeed, stationary points
may change location due to label noise. What it does guarantee is that the convergence
rate of first-order methods is the same: the loss curvature cannot blow up or flat out
and instead it is the same point by point in the model space. The Theorem advocates
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for use of ReLU networks, in line with the recent theoretical breakthrough allowing
for deep learning with no local minima [Kawaguchi, 2016]. Table 6.1 summarizes the
properties of loss correction.

6.5 Experiments

(a) (b) (c)

(d) (e) (f)

Figure 6.1: Comparison of cross-entropy with its corrections, with known or esti-
mated T.

We now test the theory on various deep neural networks trained on MNIST [Le-
Cun et al., 1998], IMDB [Maas et al., 2011], CIFAR-10, CIFAR-100 [Krizhevsky and
Hinton, 2009] and Clothing1M [Xiao et al., 2015] so as to stress that our approach is
independent on both architecture and data domain.

6.5.1 Loss corrections with T known or estimated

We artificially corrupt labels by a parametric matrix T. The rational is to mimic some
of the structure of real mistakes for similar classes, e.g. cat → dog. Transitions are
parameterized by N ∈ [0, 1] such that ground truth and wrong class have probability
respectively of 1− N, N. An example of T used for MNIST with N = 0.7 is on the
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left: 


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 .3 0 0 0 0 .7 0 0
0 0 0 .3 0 0 0 0 .7 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 .3 .7 0 0 0
0 0 0 0 0 .7 .3 0 0 0
0 .7 0 0 0 0 0 .3 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




,




1 ε ε ε ε ε ε ε ε ε
ε 1 ε ε ε ε ε ε ε ε
ε ε .33 ε ε ε ε .67 ε ε
ε ε ε .35 ε ε ε ε .65 ε
ε ε ε ε 1 ε ε ε ε ε
ε ε ε ε ε .29 .71 ε ε ε
ε ε ε ε ε .73 .26 ε ε ε
ε .75 ε ε ε ε ε .25 ε ε
ε ε ε ε ε ε ε ε 1 ε
ε ε ε ε ε ε ε ε ε 1




(6.17)

Common to all experiments is what follows. The loss ` chosen for comparison is
cross-entropy. 10% of training data is hold out for validation. The loss is evaluated on
it during training: with the corrected losses we can validated on noisy data, which is
advantageous over other approaches that measure noisy validation accuracy instead.
The available standard test sets are used for testing. We use ReLUs for all networks
and initialize weights prior to ReLUs as in He et al. [2015], otherwise by uniform
sampling in [−0.05, 0.05]. The mini-batch size is 128. The estimator of T from noisy
labels is applied to SX being training and validation sets together; in fact, preliminary
experiments highlighted that a SX of large size sensibly improves the approximation
of T; after estimation, we row-normalize the matrix. Following Menon et al. [2015],
we take a α-percentile in place of the argmax of Equation 6.15, and we find α = 97%
to work well for most experiments. Although, such estimator performs very poorly
with CIFAR100, possibly due the small number of images per class, and we find it is
better to run the argmax instead.

Fully connected network on MNIST. In the first set of experiments we consider
MNIST. Pixels are normalized in [0, 1]. Noise flips some of the similar digits: 1 →
7, 2 → 7, 3 → 8, 5 ↔ 6; see Equation (6.17, left). We train an architecture with two
dense hidden layers of size 128, with probability 0.5 of dropout. AdaGrad [Duchi
et al., 2011] is run for 40 epochs with initial learning rate 0.01 and δ = 10−6. We re-
peat each experiment 5 times to account for noise and weight initialization. It is clear
from Figure 6.1a that, although the model is somewhat robust to mild noise, high
level of corruption has a disrupting effect on `. Instead, our losses do not witness
a drastic drop. With T̂ estimated performance lays in between, yet it is significantly
better than with no correction. An example of T̂ is in Equation (6.17, right), with
ε < 10−6.

Word embedding and LSTM on IMDB. We keep only the top 5000 most frequent
words in the corpus. Each review is either truncated or padded to 400-word long.
To simulate asymmetric noise in this binary problem, we keep constant noise for the
transition 0 → 1 at 5%, while 1 → 0 is parameterized as above; 0/1 are the two
review’s sentiments. We trained two models inspired by the baselines of Dai and Le
[2015]. The first maps words into 50-dimensional embedding, before passing through
ReLUs; dropout with probability 0.8 is applied to the embedding output as in Yarin
and Ghahramani [2016]. In the second model the embedding has dimension 256
and it is followed by an LSTM with 512 units and by a last 512-dimensional hidden
layer with 0.5 dropout. AdaGrad is run for 50 epochs with the same setup as above;
results are averages over 5 runs. Figures 6.1b-6.1c display an outcome similar to what
previously observed on MNIST, in spite of difference in dataset, number of classes,
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architecture and structure of T. Noticeably, our approach is effective on recurrent
networks as well. Correcting with T̂ is in line with the true T here; we believe this is
because estimation is easier on this binary problem.

Residual networks on CIFAR-10 and CIFAR-100. For both datasets we perform per-
pixel mean subtraction and data augmentation as in He et al. [2016a], by horizontal
random flips and 32× 32 random crops after padding with 4 pixels on each side.
T for CIFAR-10 is described by: truck → automobile, bird → airplane, deer →
horse, cat ↔ dog. In CIFAR-100, the 100 classes are grouped into 20 5-size super-
classes, e.g. aquatic mammals contain beaver, dolphin, otter, seal and whale.
Within super-classes, the noise flips each class into the next, circularly.

For this last set of experiments we use deep residual networks (ResNet), the CI-
FAR10/100 architectures from He et al. [2016a]. In short, residual blocks implements
a non-linear operation F(x) in parallel with an identity shortcut, so as to sum the
input with the output of the same block: x → x + F(x). Conceptually, this allows
gradients to propagate more freely and helps convergence in deep architectures. F
is implemented as cascade of twice batch normalization → ReLU → 3× 3 convolu-
tion, following the “pre-activation" recommendation of He et al. [2016b]. Striding is
used instead of max pooling; average pooling over channels is placed just before the
output layer. We point to He et al. [2016a] for a detailed description. Here we exper-
iment with ResNets of depth 14 and 32 (CIFAR10) and 44 (CIFAR100). By common
practice [Huang et al., 2016], we run SGD with 0.9 momentum and learning rate 0.01,
and divide it by 10 after 40 and 80 epoch (120 in total) for CIFAR-10 and after 80 and
120 (150 in total) for CIFAR-100; weight decay is set to 10−4. Training deep ResNets
is more time consuming and therefore experiments are run only once. Since we use
shallower networks than the ones in He et al. [2016a], performance is not necessarily
comparable with the original work. Figures 6.1d-6.1e-6.1f forward correction does
not show any significant drop at all. Except with the shallowest ResNet, backward
correction does not work so well in the low noise regime and it is possibly affected
by high variance. Finally, notice how the noise estimation seems particularly difficult
on CIFAR100.

6.5.2 Comparing with other loss functions

We now compare with other methods. Data, architectures and artificial noise are the
same as above. Additionally, we test the case of symmetric noise: N is the probability
of label flip that is spread uniformly among all the other classes. We select methods
prescribing changes in the loss function, similarly to ours: unhinged [van Rooyen
et al., 2015], sigmoid [Ghosh et al., 2015], Savage [Masnadi-Shirazi and Vasconcelos,
2009] and soft and hard bootstrapping [Reed et al., 2015]; hyper-parameters of the
last two methods are set in accordance with their paper.

Unhinged loss is unbounded and cannot be used alone. In the original work
L2 regularization is applied to address the problem, when training non-parametric
kernel models. We tried to regularize every layer with little success: learning either
does not converge (too little regularization) or converge to very poor solutions (too
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much). On preliminary experiments sigmoid loss ran into the opposite issue, namely
premature saturation: the loss reaches a plateau too quickly, a well-known problem
with sigmoidal activation functions [Glorot and Bengio, 2010]. To make those losses
usable for comparison, we stack a layer of batch normalization right before the loss
function. Essentially, the network output is normalized around 0 and thus operates
in a bounded and non-saturated area of the loss; note that this is never required for
linear or kernel models.

Table 6.3 presents the empirical analysis. We list the key findings.
(a) In the absence of artificial noise (first column for each dataset), all losses reach

similar accuracy with a spread of 2 points; exceptions are some instances of unhinged
and sigmoid, and Savage on CIFAR100 that makes learning impossible. Additionally,
with IMDB there are cases († in Table 6.3) of loss correction with noise estimation
that perform slightly better than assuming no noise: clearly, the estimator is able to
recover the natural noise in the sentiment reviews.

(b) With low asymmetric noise (second column) results differ between simple ar-
chitecture/tasks (datasets on the left) and deep networks/more difficult problems
(right): in the former case, the two corrections behave similarly and are not statisti-
cally far from the competitors; in the latter case, forward correction with known T is
unbeaten, with no clear winner among the remaining ones.

(c) With asymmetric noise (last two columns) the two loss corrections with known
T are overall the best performing, confirming the practical implications of their for-
mal guarantees; forward is usually the best.

(d) If we exclude CIFAR100, the noise estimation accounts for average accuracy
drops between 0 (IMBD with LSTM model) and 27 points (MNIST); nevertheless, our
performance is better than any other methods in many occasions.

(e) In the experiment on CIFAR100 we obtain essentially perfect noise robustness
with the ideal forward correction. The noise estimation works well except in the
very last column, yet it guarantees again better accuracy over competing methods.
We discuss this issue in Section 6.6.

6.5.3 Experiments on Clothing1M

Finally, we test on Clothing1M [Xiao et al., 2015], consisting of 1M images with noisy
labels, with additional 50k, 14k, 10k of clean data respectively for training, validation
and testing; we refer to those sets by their size. We aim to classify images within 14
classes, e.g. t-shirt, suit, vest. In the original work two AlexNets [Krizhevsky et al.,
2012] are trained together via EM; the networks are pre-trained with ImageNet. Two
practical tricks are fundamental: a first learning phase with the clean 50k to help EM
(#1 in Table 6.2) and a second phase with the mix of 50k bootstrapped to 500k and
1M (#3). Data augmentation is also applied, same as in Section 6.5.1 for CIFAR10.

We learn a 50-layer ResNet pre-trained on ImageNet — the bottleneck architecture
of He et al. [2016a] — with SGD with learning rate 10−3 and 10−4 for 5 epochs each.
and 0.9 momentum. Batch size is 32. When we train with 50k we use weight decay
5 · 10−2 and data augmentation, while with 1M we use only weight decay of 10−3.
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Clothing1M

# model loss init training accuracy
1 AlexNet cross-. ImageNet 50k 72.63
2 AlexNet [Sukhbaatar et al., 2015] cross-. #1 1M, 50k 76.22
3 AlexNet [Xiao et al., 2015] cross-. #1 1M, 50k 78.24
4 50-ResNet cross- ImageNet 1M 68.94
5 50-ResNet backward ImageNet 1M 69.13
6 50-ResNet forward ImageNet 1M 69.84
7 50-ResNet cross-. ImageNet 50k 75.19
8 50-ResNet cross-. #6 50k 80.38

Table 6.2: Results on the top section are from Xiao et al. [2015]. In #2, #3 the clean 50k
are bootstrapped to 500k. Best result #8 is obtained by fine tuning a net trained with
forward correction.

The ResNet gives an uplift of about 2.5 points by training with 50k only (#7 vs. #1).
However, the large amount of noisy images is essential to compete with #3. Instead
of estimating the matrix T by (6.15)-(6.16), we exploit the curated labels of 50k and
their noisy versions in 1M. Forward and backward corrections confirm to work
better than cross-entropy (#6, #5 vs. #4), yet cannot reach the state of the art without
the additional clean data. Thus, we fine-tune the networks with 50k, with the same
learning parameters as in #7; because of time constraints we only fine-tune #6. The
new state of the art is #8 that outperforms Xiao et al. [2015] of more than 2 points,
which is achieved without time consuming bootstrapping of the 50k.

6.6 Discussion

We have proposed two methods for training deep neural networks with noisy la-
bels that boils down to two loss corrections based on modeling the noise by a row-
stochastic matrix T. Test accuracy is consistently only a few percents away from
training cross-entropy on clean data, while corruption often worsen performance of
cross-entropy by 40 points or more. Forward correction often outperforms the back-
ward one. The explicit inversion of T — sometimes with high condition number —
may be the root of the problem; indeed, backward correction is a linear combination
of loss values for each possible label, and their coefficients may be far by orders of
magnitude, which intuitively makes optimization hard. Instead, forward correction
projects model predictions into another distribution in the probability simplex.

The quality of noise estimation is evidently the key factor for successfully ob-
taining robustness. Estimation works fairly well in most experiments with a median
drop of only 10 points of accuracy with respect to using the true T. The only excep-
tion is the very last column of tests on CIFAR100, where estimation destroys most of
the gain from correcting the loss. We believe that the combination of high noise and
limited number of images per class (500) is detrimental to the proposed estimator.
This is confirmed by the sensitivity of the hyper-parameter α. In fact, the same value
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used in other experiments led to T̂ with no resemblance to the ground truth, leading
the learning process to very poor solutions.

We attempt two explanations. First, the sample size may be too small for estimat-
ing T with 100 classes — it is 10 times smaller per class than on CIFAR10. Second,
we assumption (2) of Theorem 63 may be the bottleneck: cross-entropy achieves less
than 70 accuracy on clean data versus ∼ 90 with CIFAR10; this is an indication that
the model may well be misspecified for CIFAR100 and hence the estimator of p(ỹ|x)
may be not good enough.

Future work shall improve the estimation phase by incorporating knowledge of
the noise structure, for example assuming low rank T. Improvements on this direc-
tion may also enlarge the applicability of our approach to multi-class with thousands
of classes. It remains an open question whether more realistic instance-dependent
noise may be included in our approach [Xiao et al., 2015; Menon et al., 2016]. Finally,
we anticipate the application of our approach as a seamless tool for pre-training
models with noisy data from the Web, in the spirit of Krause et al. [2016].
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6.7 Appendix: proofs

6.7.1 Proof of Theorem 60

Simply:

Ep(ỹ|·) `
←(h(x)) = T `←(h(x)) = T T−1`(h(x)) = `(h(x)) . (6.18)

The second statement follows from `(ei, h(x)) = (ei)>`(h(x)). Therefore, the mini-
mizers are the same.

6.7.2 Proof of Theorem 62

First notice that:

`→ψ (y, h(x)) = `(y, T>ψ−1(h(x))) = `φ(y, h(x)) (6.19)

where we denote φ−1 = ψ−1 ◦ T>, or equivalently φ = (T−1)> ◦ψ by rule of inverse
of composition. φ is invertible by composition of invertible functions, its domain
is [0, 1] as of ψ and its codomain is R because of composition of T−1 with ψ. The
last loss in Equation 6.19 is therefore proper composite with link φ. Finally, from
Equation 6.10, the loss minimizer over the noisy distribution is:

argmin
h

ED̃ `φ(y, h(x)) = φ(p(ỹ|x)) (6.20)

= ψ((T−1)>p(ỹ|x)) = ψ(p(y|x)) , (6.21)

that proves the Theorem.

6.7.3 Proof of Theorem 63

For any j ∈ [c] and any x ∈ X , we have:

p(ỹ = ej|x) = ∑
k∈[c]

p(ỹ = ej|y = ek) p(y = ek|x) (6.22)

= ∑
k∈[c]

Tkj p(y = ek|x) . (6.23)

When x = x̄i, we have p(y = ek|x̄i) = 0 for k 6= i.
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6.7.4 Proof of Theorem 64

We give the proof for cross-entropy for simplicity. One can use the Factorization
Theorem 18 to generalize the result to all lols. When y = ei the loss is:

`(ei, h(x)) = − log p(y|x)i (6.24)

= − log
eW(n)

i· x(n−1)+b(n)
i

∑c
k=1 eW(n)

k· x(n−1)+b(n)
k

(6.25)

= −W(n)
i· x(n−1) + b(n)

i + log
c

∑
k=1

eW(n)
k· x(n−1)+b(n)

k . (6.26)

The only dependence on the true class ei above are the first two terms. The log-
partition is independent of the precise class i. Evidently, the noise affects the loss only
through W(n)

·i and b(n)
i : those are the only terms in which `(y, h(x)) and `(ỹ, h(x))

may differ. Therefore we can rewrite the backward corrected loss as:

`←(ej, h(x)) =
(

T−1`(h(x))
)

j
(6.27)

= −
(

T−1W(n)
)

j·
x(n−1) −

(
T−1b(n)

)
j

+ log
c

∑
k=1

eW(n)
k· x(n−1)+b(n)

k . (6.28)

In fact, note that T−1 does not affect the log-partition function. To see this, let

A(x) = log (∑c
k=1 eW(n)

k· x(n−1)+b(n)
k ), with the (vector) log-partition being A(x)1. It

follows that its correction is T−1A(x)1 = A(x)1, by left-multiplication of T and be-
cause T1 = 1 since T is row-stochastic. Thus `←(ej, h (x)) = B(x) + A(x), where
B(x) = −(T−1W(n))j·x(n−1) − (T−1b(n))j is a piece-wise linear function of the model
parameters, and the log-partition A(x) is non-linear because of the loss and the ar-
chitecture but does not depend on noise. Since the composition of piece-wise linear
function is piece-wise linear, the Hessian of B(x) vanishes, and therefore the Hessian
of `← is noise independent for any T. The same holds for ` (no correction) by taking
T = I and hence the Hessians are the same.

6.8 References

We review relevant literature on Deep Learning. Several works have attempted to
deal with noisy labels of late, especially in Computer Vision. This is often achieved
by formulating noise-aware models. Mnih and Hinton [2012] build a noise model for
binary classification of aerial image patches, which can handle omission and wrong
location of training labels. Xiao et al. [2015] construct a more sophisticated mix of
symmetric, asymmetric and instance-dependent noise; two networks are learned by
EM as model for classifier and noise type. Reed et al. [2015] augment the objective
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similarly to entropy regularization. In practice, it is often the case that a small set of
clean labels is needed in order either to pre-train or fine-tune the model [Xiao et al.,
2015; Krause et al., 2016; Reed et al., 2015].

The work of Sukhbaatar et al. [2015] deserves a particular mention. The method
augments the architecture by adding a linear layer on top of the network. Once
learned, this layer plays the role of our matrix T. The insight is that, at training time,
the effect of the noise is captured by the linear layer, emulating the corruption of
the model predictions; at test time, the linear layer must be removed to obtain clean
predictions. However, learning this architecture appears problematic; heuristics are
necessary, such as trace regularization and a fixed updating schedule for the linear
layer. We sidestep those issues by decoupling the two phases: we first estimate T and
then learn with loss correction.

Recent work has provided methods to estimate label flip probabilities directly
from noisy samples. (Note that the matrix is fully specified by 2 noise rates in binary
classification.) If one has access to clean samples, estimation is reliable Kearns [1998].
With only noisy samples, one can obtain bounds on these rates [Laird, 1988, Algorithm
5.8], one can obtain T under some assumptions on the generating distribution [Scott
et al., 2013; Sanderson and C. Scott, 2014; Liu and Tao, 2016; Menon et al., 2015;
Ramaswamy et al., 2016]. Typically, it is required that the generating distribution
is “weakly separable": that is, such that for each class, there exists some “perfect”
instance, i.e. one that is classified with probability equal to one. Proposed estima-
tors involve either the use of kernel mean embedding [Ramaswamy et al., 2016], or
post-processing the output of a standard class-probability estimator such as logistic
regression using order statistics on the range of scores [Liu and Tao, 2016; Menon
et al., 2015] or the slope of the induced ROC curve [Sanderson and C. Scott, 2014].
A common limitation is the focus on the case of binary labels, with the exception of
Sanderson and C. Scott [2014].

We are not aware of any other attempt at either applying the noise-corrected
loss approach of Natarajan et al. [2013] to neural networks, nor on combining those
losses with the above noise rate estimators. Our work sits precisely in this intersec-
tion. Note that, even though in principle loss correction should not be necessary for
high-capacity models like deep neural networks, owing to aforementioned theoreti-
cal results, in practice such correction may offset the sub-optimality of these models
arising from training on finite samples.
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Chapter 7

Learning from vertically
distributed data without entity
matching

This last Chapter deals with a rather particular learning problem. Our goal is to learn
classifiers combining features from two different spaces. To a first approximation, we
can consider the data as vertically (feature-wise) partitioned, hence distributed. But
the scenario is actually more challenging. We do not even know how to match fea-
tures vectors from one dataset to the other; their identity has been lost, for instance
due to anonymization. Therefore, to some extent, the weak supervision derives from
the fact that we do not exactly know how to match “parts” of features vectors, while
we do assume to know all the relative labels. Once again, we design a solution within
the two-step framework by first recovering the missing information via estimation of
sufficient statistics. This approach allow us to bypass a more traditional solution,
combinatorial in nature, that resorts to entity matching. While conceptually simi-
lar to the rest of the Thesis, the peculiar constraints for this learning problem push
for a different workaround manipulating loss functions. We require the notion of
Rademacher observations, aggregated statistics from which we learn instead of ex-
amples. This way, entity resolution can be bypassed to carry out supervised learning
almost as accurate as if its solution were known.

7.1 Motivation

Consider the following data fusion scenario: two datasets/peers contain the same
real-world entities described using partially shared features, for example banking
and insurance company records of the same customer base. Our goal is to learn a
classifier in the cross product space of the two domains, in the hard case in which no
shared ID is available – e.g. due to anonymization.

A main motivation towards this objective comes from the reported experience that
combining features from different sources leads to better predictive power. For in-
stance, insurance and banking data together can improve fraud detection; shopping
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Peer 1 Peer 2
shared

x1 x3 c
e1 1 1 1
e2 -1 1 1

shared
x2 x3 c

e′1 -1 1 1
e′2 1 1 1

Table 7.1: A simple case of vertical partitioning with p = 2 peers, two shared vari-
ables x3 and c (the class to predict). This toy example has binary description features
and a binary shared feature, but this restriction does not need to hold in the general
case. For example, each shared feature can be any categorical/ordinal feature, like
“post-code”, “age-band”, etc.

records well complement medical history for estimating risk of disease [Tsui et al.,
2003]; joining heterogeneous data helps prediction in genomics [Lanckriet et al., 2004;
Yamanishi et al., 2004]; security agencies integrate various sources for terrorism in-
telligence [Sweeney, 2005; Christen, 2006; Sproull et al., 2015]

Typical data fusion methods however rely on a known map between entities [Blei-
holder and Naumann, 2008], i.e. peers have partially different views of the same ex-
amples. Instead, we assume the datasets do not share a common ID, as shown in
Figure 7.2; that is, for example, the case when data collection is performed indepen-
dently by each peer, or when sources are deliberately anonymized. Thus, we can
think the data as vertically partitioned (VP).

Learning from massively distributed data collections and multiple information
sources has become a pivotal problem, yet it faces critical challenges, among which
is the fact that it relies on reconstructing consistent examples from diverse features
distributed between different data handling peers. Exhaustive search to solve this
problem is simply not scalable, nor communication efficient, and sometimes not even
accurate [Estrada et al., 2010; Zhang et al., 2015].

7.1.1 Entity resolution

Entity resolution (ER), or entity matching [Christen, 2012], would be the traditional
approach for reconciling entities with no shared ID. It approximates a join op-
eration, assuming that some of the attributes are shared, such as age-band, gender,
post-code (etc.), and hence can be used as “weak IDs”. Most techniques for ER are
based on similarity functions and thresholding: candidate entities are selected as
matches when their similarity is above a threshold. Both components can be tuned
on some ground truth matches and effectively enhanced with learning techniques
[Bilenko and Mooney, 2003; Christen, 2012]. Performance metrics of ER encompass
lots of different parameters, including generality, accuracy, soundness, scalability,
parallelizability [Rastogi et al., 2011].

The standard pipeline for learning with ER is depicted in Figure 7.1 (left): (1)
entities are matched based on similarity and heuristics, (2) they are merged in one
unique database and (3) a model is learned on the joint data. Here, we deliberately
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Figure 7.1: Learning on top of ER (left) or with rados (right).

do not consider common issues, such as conflicts and heterogeneity [Bleiholder and
Naumann, 2008].

From a high level view, ER integrates data as a pre-process for other tasks. When
it comes to learning from ER’ed data, small changes in ER can have large impact
on evaluating classifiers, even for simple classifiers as linear models. To see this,
suppose we are in the toy example of Table 7.1. Here, all shared variables have the
same values, so entity matching has two potential solutions; notice that one of the
shared variable is class c. One, say ER1, is matching e1 with e′1 and e2 with e′2. We
denote the examples obtained by

e11 = ((1,−1, 1), 1), e22 = ((−1, 1, 1), 1) .

The other solution, say ER2, is matching e1 with e′2 and e2 with e′1. We denote the
examples obtained by

e12 = ((1, 1, 1), 1)), e21 = ((−1,−1, 1), 1) .

Consider linear classifier θ = (1, 1, 1) ∈ R3; the predicted class is given by the sign
of its inner product with an observation, sign〈θ, z〉. While θ classifies perfectly on
{e11, e22} (zero error), it classifies no better than random on {e12, e21} (error 50%). The
simple demonstration shows how the approach of entity matching is not only com-
putationally expensive but potentially detrimental to the final learning performance.
We advocate for an entirely different solution addressing both issues.

7.2 Learning setting

In this Chapter we work again on the setting of binary classification with linear
models θ. We refer to S .

= {(xi, yi), i ∈ [m]} as the total learning sample. We have p
(sub)samples, S j of size mj, j ∈ [p] for some p > 1. Each one is defined in its own
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peer 3
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not shared shared

features

peer 1 peer 2

??

Figure 7.2: Schematic view of our setting, with p = 3 peers (best viewed in color).
Some features (cyan) are described in each peer and one these shared features is a
class. Non-shared features are split among peers. A so-called total sample S is fig-
ured by the red rectangle. In the case of vertical partition (VP) all peers see different
views of the same examples, but do not know who is who among their datasets (“?”).
Hence, each bit of the total sample is seen by one peer.

feature space

X j .
= ×dj

k=1Xjk , jk ∈ [d], ∀k . (7.1)

To get a simple case of this framework, shown in Figure 7.2, one may see each
S j .

= {(xj
i , yj

i), i ∈ [mj]} handled by a peer Pj. We denote this setting by the work
“distributed” not necessarily meaning that the data is split on different computing
machines or locations — although this is also possible —, but to stress the fact that
the partial views of the dataset cannot be simply joined together. To avoid confusion,
we reserve the word entity for a generic record in a dataset, the object of matching,
and attributes or features to its fields. In the following, subscripts i will refer to an
example or entity, while superscripts j to a peer.

We rely on the following assumption:

(A7) The class Y and a subset of features J ⊆ {Xk}d
k=1 are shared by all peers. Each

other feature is exclusive to one peer.

Hence, there exists dim(J ) + 1 columns that represent the same set of attributes
among peers, and one of them is the class. Each of the dimensions of J is in all X js.
This is a realistic assumption for the features in J : in the (VP) setting the domain is
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vertically partitioned for the non-shared features, implying mj = mj′ = m, ∀j, j′ ∈ [p].
In this case, there exists an (unknown) one-to-one mapping between the peers’ rows.
The shared labels may be harder to justify, since they are the attribute we aim to
predict. However, we argue in Section 7.6 that if at least one peer has classes than all
peers can get their labels as well without entity resolution, by methods for LLP from
Chapter 4.

7.3 Rademacher observations

In order to elaborate our solution to the learning problem of this Chapter, we need
to recall elements of the theory on Rademacher observations (rados). The notion is
introduced in Nock et al. [2015], which we have co-authored. In the standard binary
classification setting, a Rademacher observation is a simple transformation of the
examples in S .

Definition 65. Let σ ∈ Σm = {−1, 1}m. A Rademacher observation, or rado, is a vector
in Rd defined as:

πσ
.
=

m

∑
i=1

1{yi = σi} yixi . (7.2)

We also term any element yx as an edge vector. Rados are effectively sums of edge
vectors restricted to subsample of S . From S , we can obtain 2m rados. For any
Σ′m ⊆ Σm

.
= {−1, 1}m, we let RS ,Σ′m

.
= {πσ : πσ ∈ Σ′m} which denotes the set of

rados that can be crafted from Σ′m using S . One rado in RS ,Σm is a non-normalized
version of the mean operator π = ∑m

i=1 yi · xi, with σ = y. A comment on notation in
this Chapter: for maintaining coherence with published work, we use the greek letter
π for rados and the letter R for sets of rados. Since there is no mention of neither
label proportions (Chapter 4) nor Rademacher complexity, this choice should not be
a source of confusion.

One reason behind Rademacher observations is the existence of multiple equiv-
alences between loss functions computed on examples and loss functions computed
on rados. The idea was originally introduced by mapping the standard logistic loss
on examples to a particular exponential loss on rados [Nock et al., 2015, Lemma 2].

Theorem 66. The following holds true for any θ and S :

E(x,y)∼S log
(

1 + e−y〈θ,x〉
)
= log(2) +

1
m

log
(

Eπ∼RS ,Σm
e−〈θ,π〉

)
(7.3)

By virtue of the Theorem, in order to compute and hence optimize the right-hand
side of 7.3, we don’t need to know any individual examples. Instead, we can train a
model on rados. Importantly, the minimizers of the two sides of the Equation are the
same. Therefore, no post-processing of the model is required. This should remind of
the Factorization Theorem 18.
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There is an caveat though: the equivalence strictly holds true only for the whole,
exponentially-sized set RS ,Σm , undermining any direct application. Nevertheless, we
can get interesting generalization bounds based on Equation 7.3 when we compute
the right-hand side by uniform sampling of rados belonging inRS ,Σm and by limiting
ourselves to a set of linear size [Nock et al., 2015, Theorem 3].

Instead of concentrating on the losses of Theorem 66, we formulate an equiv-
alence based on square loss. Such another relationship between the two worlds,
examples and rados, suggests the existence of a wide theory underpinning those ag-
gregated statistics. For a more complete view on the topic, the interested reader can
consult Nock [2015].

We consider the empirical risk of an L2 regularized square loss `(x) = (1− x)2.
Here Γ is a symmetric positive definite matrix.

ES (1− y〈θ, x〉)2 + θ>Γθ . (7.4)

The loss admits a simple closed form solution:

θ?
.
= arg min

θ
ES (1− y〈θ, x〉)2 + θ>Γθ =

(
XX> + m · Γ

)−1
π , (7.5)

where X .
= [x1|x2| · · · |xm], and so, XX> = ∑i xix>i . Remark that the computation of

θ? involves π, the rado corresponding with the mean operator; labels do not appear
anywhere else in the formula in light of label sufficiency. Let us define the following
M-loss over rados via its empirical risk.

Definition 67. The empirical risk associated with the M-loss over RS ,Σ′m of classifier θ is:

1
2

VΣ′m 〈θ, πσ〉 −EΣ′m 〈θ, πσ〉 , (7.6)

where expectation and variance are computed with respect to uniform sampling of σ in Σ′m.

Equation (7.6) resembles a Markowitz mean-variance criterion [Markowitz, 1952]
— hence the loss name —, with no coefficient for the risk aversion. What this means
is that a good classifier trained on rados should have large “return” and small “risk”,
where the risk is the variance of its predictions and the return is its inner product
with the expected rado. M-loss and squared loss are linked via the next Theorem.

Theorem 68. The following holds true for any θ and S :

E(x,y)∼S (1− y〈θ, x〉)2 = 1 +
2
m

Vσ∼Σm 〈θ, πσ〉 −
4
m

Eσ∼Σm 〈θ, πσ〉 . (7.7)

The Proof in 7.7.1 simplifies the long derivation in Nock [2015]. The above equiv-
alence still holds if both risks are regularized by θ>Γθ, for any symmetric positive
semi-definite Γ. Hence, minimizing the L2 regularized square loss over examples is
equivalent to minimizing a regularized version of the M-loss, over the complete set
of all rados.
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Rados can also be thought as sufficient statistics, similarly to the mean operator.

Lemma 69. The function S 7→ RS ,Σm that produces the whole set of rados RS ,Σm is a
sufficient statistic for variables (x, y) with regard to the hypothesis space of linear classifiers
H and square loss, in the sense that, for any two sample S and S ′ and for any θ ∈ H we
have:

ES (1− y〈θ, x〉)2 −ES ′(1− y〈θ, x〉)2 does not depend on (x, y)

⇐⇒ RS ,Σm = RS ′,Σm . (7.8)

Proof in 7.7.2. As we have noticed already, RS ,Σm contains the mean operator and
hence sufficiency for the label variable is not a surprise. Although, the claim is about
all examples in S , not just the labels. Yet, the Lemma is in some sense trivial. In
fact, the whole set of rados RS ,Σm contains also all “the sums” of single edge vectors
yixi — when there is only one i such that σi in the definition of rados is equal to
yi. The knowledge of all edge vectors would be sufficient for all S even without
the use of rados, in case we use any margin loss with linear classifiers. Therefore,
expressing the empirical risk with rados requires many more elements to achieve
statistical sufficiency, i.e. the whole RS ,Σm .

Therefore, why using rados instead of examples? The main reason is that rados
are invariant to the selection of different solutions for entity resolution. For example,
consider again Table 7.1. Since all classes are positive, computing a rado is just
summing observations. Let πij,kl be the rado that sums those of examples eij and ekl .
Then, surprisingly, regardless of the solution to ER, this rado is the same:

(E1) π11,22 = (1,−1, 1) + (−1, 1, 1) (7.9)

= (0, 0, 2) (7.10)

= (1, 1, 1) + (−1,−1, 1) = (7.11)

= π12,21 (E2) . (7.12)

This always holds in the (VP) setting: there a set of rado, potentially of exponential
size, that matches the set that could be built knowing the true entity resolution. Next,
we give the algorithm that builds these rados and it is communication efficient and
easily parallelizable.

7.4 Building and learning from block rados

In our distributed setting, we extend the definition of rados in the following way. We
let s ∈ J denote a signature, a vector of shared attributes.

Definition 70. The rado of signature s and peer Pj is:

π
j
(s,y)

.
=

m

∑
i=1

1{projJ (xj
i) = s ∧ yj

i = y} yj
i x

j
i , (7.13)
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where projI (z) denotes the restriction of a vector z to I .

In short, π
j
(s,y) sums edge vectors local to Pj whose examples match signature s

and class y. Intuitively, we can conceptualize those rados and expressing statistics
locally sufficient for the examples sharing the same signature s in the data of Pj. Let
F (z) ⊆ X be the set of features of z. We also define, for any F ′ ⊇ F (z), liftF ′(z) to
be the vector z′ described using F ′ such that projF (z)(z

′) = z and projF ′\F (z)(z
′) = 0.

While projF (z) removes coordinates of z, liftF ′(z) “completes” the coordinates of z
with zeroes.

By analogy with entity resolution [Whang et al., 2009], we define block rados as
rados, lifted to X , that are the (weighted) sums of examples matching a particular
signature and class in all peers.

Definition 71. For any s ∈ J , y ∈ {−1, 1}, let m(s,y) be the number of examples matching
signature (s, y). Then a basic block (BB) rado for (s, y) is:

π(s,y)
.
=

p

∑
j=1

liftX (π
j
(s,y))−m(s,y)(p− 1) · liftX (y · s) . (7.14)

We need to subtract the second term to take into account that s has already been
summed m(s,y) times by each peer. Let:

J∗ .
= {(s, y) ∈ J × {−1, 1} : ∃j ∈ [p], π

j
(s,y) 6= 0} . (7.15)

This latter set, which can easily be computed from all peers, has cardinal m∗
.
= |J∗| ≤

m, and even m∗ � m when few features are shared. We let:

RB
.
= {πvi , ∀i ∈ [m∗]} (7.16)

denote the ordered set of each BB rado, each coordinate of v = (s, y) being in one-one
correspondence with an element of J∗. A superset ofRB is interesting, that considers
all sums of vectors from RB:

R∗ .
=

{
∑
i∈U

πvi , ∀U ⊆ [m∗]

}
. (7.17)

We call R∗ the set of block rados. Notice that we may have |R∗| = Ω(2∑j |S j|). It is
therefore intractable in general to explicitly compute R∗. However, |RB| = O(∑j |S j|)
and to compute it, we just need the set of π

j
(s,y), hence a communication complexity

that can be much smaller than ∑j |S j|.
This set has exponential size. A possibility is to randomly subsample the set,

along with proving good uniform convergence bounds for the M-loss — this can be
done in the same way as in [Nock et al., 2015]. However, in the case of the square
loss, greed pays twice: learning from all rados in R∗ may be both computationally
cheap and accurate.
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Algorithm 11: RadoCraft(P1,P2, ...,Pp)

Input: Peers P1,P2, ...,Pp

RB ← ∅
for s ∈ J , y ∈ {±1}

Let π(s,y) ← 0 ∈ Rd

for j ∈ [p]
π(s,y) ← π(s,y) + liftX (craft(s, y) Pj)
RB ← RB ∪ {π(s,y)}

Output: RB

7.4.1 Computation and optimality of block rados

We do not have access to all rados because we do not assume to know the entity
matching function. Yet, we are going to show a first result which is, in a sense,
stronger: R∗ always belongs to RS ,Σm . Therefore R∗ —potentially exponential-
sized— gives us a set of rados that would have been built from S , had we known
the perfect solution to entity matching. So, even without carrying out entity matching,
we have access to a potentially huge set of “ideal” rados which we can use to learn θ

via the minimization of the empirical risk on M-loss.

Theorem 72. In setting (VP), for any p ≥ 2, any S , any J . Let RB be the output of
Algorithm 11 and let R∗ its superset by Equation (7.17). Then, R∗ ⊆ RS ,Σm .

Proof in 7.7.3. Furthermore, there exists a simple algorithm to build RB. Algo-
rithm 11 summarizes the protocol. Each peer Pj crafts rados upon request of a partic-
ular signature and label; “craft(s, y) ” symbolizes a message sent, expecting π

j
(s,y)

in return. The computation of each rado for each peer can easily be performed in
parallel. Algorithm 11 always provides the basis for the set R∗ of the “ideal” rados.

7.4.2 Learning from all block rados

The questions that remain are how we minimize the regularized M-loss and, more
importantly, what subset of rados from R∗ we shall use. As already discussed, we
choose “greediness” against randomization: instead of picking a (small) random
subset of R∗, we want to use them all because we know that all of them are “ideal”
or close to being so via Theorems 72. Recall that |R∗| may be of exponential size
(in m, d, |J∗|, etc.). We now show that if we consider all of R∗, the optimal model
learned from rados has an analytic expression which depends only on the rados of
RB. In short, it is even faster to compute than θ̂ from S in Equation (7.5), and can be
directly computed from the output of Algorithm 11.

Theorem 73. Let θ̂ be the minimizer of Equation (7.6). Then:

θ̂ =
(

BB> + dimc(B) · Γ
)−1

B1 , (7.18)



146 Learning from vertically distributed data without entity matching

Algorithm 12: DRL(P1,P2, ...,Pp; Γ)

Input: Peers P1,P2, ...,Pp, Γ, γ > 0
B← Column(RadoCraft(P1,P2, ...,Pp))

θ←
(

BB> + γ · Γ
)−1 B1

Output: θ

where B stacks in columns the rados of RB, and dimc(B) is the number of columns of B.

Proof in 7.7.4. When m∗ = m, each element of RB is in fact an example, and we
retrieve Equation (7.5). One consequence of Theorem 73 is the following convergence
property which we state informally: in the (VP) setting, for any ε ≥ 0, there exists
a minimal size for J∗ such that θ̂ will be ε-close to θ?, where the closeness can
be measured by ‖θ̂− θ?‖2 or |cos(θ̂, θ?)|. The statement of Distributed Rado-Learn
(DRL) is in Algorithm 12. “column(.)” takes a set of vectors and put them in column
in a matrix.

7.4.3 A more realistic setting

What happens if we drop the assumption of data being vertically partitioned (VP)?
Or equivalently, what if examples are not shared by all peers ? This is a much
more realistic scenario. Since there is no shared ID — and the data may have been
anonymized — we are not even in a situation where we can guarantee that a specific
client of the bank is, or is not, a client of the insurance company. Thus, there may be
significant unknown data “to reconstruct” the total sample S , but we do not know
which specific examples have missing features.

In this most general setting (G), it is possible to show that a very simple transfor-
mation of the rados, involving only the shared features, has the same properties so
far described and for which Theorem 72 holds in expectation. We leave the details to
Appendix 7.8 to avoid the heavier notation. However, in the next Section, we provide
an experimental validation of our approach in both the settings.

7.5 Experiments

We evaluate the leverage that DRL provides compared to the peers, that would learn
using only their local dataset. Each peer Pj estimates learns through a 10-folds strat-
ified cross-validation minimization of regularized squared loss (Equation 7.5), where
γ is also locally optimized through a ten-folds CV in set {.01, 1.0, 100.0}. DRL solves
Equation 7.18 where RB is built using RadoCraft, with the set of all peers as input.

We have carried out a very simple optimization of the regularization matrix of
DRL as a diagonal matrix which weights differently the shared features:

Γ = diag(liftX (projJ (1))) + γ · diag(liftX (projX\J (1))), for γ ∈ G . (7.19)



§7.5 Experiments 147

γ is optimized by a 10-folds CV on J∗, defined in Equation 7.15. CV is performed on
rados as follows: first, RB is split in 10 folds, RB,`, for ` = 1, 2, ..., 10. Then, we repeat
for ` = 1, 2, ..., 10 (and then average) the following CV routine:

1. DRL is trained using RB\RB,`

2. DRL’s solution is evaluated on “test rados” by computing the average M-loss

The expression of Γ for rados exploits the idea that the estimations related to a shared
feature can be much more accurate than for another, non shared feature.

7.5.1 Domain generation

We ran experiments on a dozen UCI domains [Bache and Lichman, 2013]. Only two
are fully detailed here, the rest are presented in Appendix 7.9. They are mice (m×
d) ≈ (1K × 70) and musk ≈ (6.5K × 166). For each domain, we have varied (i) the
number of peers p, (ii) the number of shared features dim(J ), and (iii) the number
b of numeric modalities (“bins”) each shared feature was reduced to (it controls the
size of J∗). The training sample is split among peers, each keeping record of I and
its own features (non shared features are evenly partitioned among peers). Finally,
for some ps ∈ [0, 1], each peer Pj selects a proportion ps of its examples index and
for each of them, another peer Pj′ , chosen at random, gets the example as well (on
its own set of features X j′). This policy simulate scenario (G). When ps = 0, this is
setting (VP). We then run all algorithms for each value p, dim(J ), b, ps. As we shall
see, b appears to have a relatively small influence compared to the other factors, so we
mainly report results combining various values for p, dim(J ) and ps, for the range
of values of p, dim(J ) specified in Table 7.6, and for ps ∈ {0.0, 0.2}. We have chosen
b = 4 for all domains, except when it is not possible (if for example all features are
boolean), in which case we pick b = 2.

7.5.2 Metric

We used two metrics. The first:

∆ .
= perr(DRL)−min

j
perr(P

j) ∈ [−1, 1] , (7.20)

is the test error for DRL minus that of the optimal peer in hindsight (since we consider
the peer’s test error). when ∆ < 0, DRL beats all peers. For example, Table 7.3
(left) provides the results obtained on UCI domain mice. We see that for almost all
combinations of p and dim(J ), DRL beats all peers.

The smallest test error obtained for a peer among all runs for each domain: this is
an indication of the room of improvement for DRL, and it also shows that in general,
at least some (and in fact most) peers were always very significantly better than
random guessing, a safe-check that DRL is not just beating unbiased coins.
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Table 7.2: Left: test error of DRL on domain ionosphere, as a function of the num-
ber of bins, aggregating all values of the number of peers p and number of shared
features dim(J ) used; the green line denotes the average values. Right: scatter plot
of the test error of DRL (y) vs that of the Oracle (learning using the complete entity-
resolved domain). Points in the dark grey area (green) denote better performances
of DRL; points in the light grey area (blue) denote better performances of the Oracle
(but not statistically better). Points in the white area (red) denote statistically better
performances of the Oracle (filled points:ps = 0.2; empty points:ps = 0.8).

To evaluate the statistical significance, we compute:

q .
= proportion of peers statistically beaten by DRL . (7.21)

To compute the test, we use the powerful Benjamini-Hochberg procedure [Benjamini
and Hochberg, 1995] on top of paired t-tests with q∗ = p-val = 0.05. q = 0.8 surface
helps see when DRL statistically beats all peers. For example, Table 7.3 (right) displays
that DRL does not always statistically beat all peers when ∆ < 0, yet it manages to
statistically beat all of them in approximately one third to one half of the total tests,
which implies that, on this domain, there is a significant chance that DRL improves
on the peers, regardless of their number and the number of shared features.

7.5.3 Results

All domains display that there exists regimes (p, dim(J )) for which DRL improves on
all peers, in some cases significantly. Sometimes, the improvement is sparse (phish-
ing, creditcard), but sometimes it is quite spectacular and in fact (almost) systematic
(page, ionosphere, steelplates). Domain steelplate’s case is interesting, since the so-
called Oracle, i.e. the learner that learns from the complete training fold before it is
split among peers — and therefore knows the solution to entity matching —, has
for this domain almost optimal error, but local peers are in fact very far from this
optimum. This indicates that many features, properly combined, are necessary to
attain the best performances. DRL’s performances are close to the Oracle, which
accounts for the huge gap in classification compared to peers — sometimes, DRL’s
test error is smaller than that of the best peer by more than 20% —, and so it seems
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Table 7.3: Results on domain mice: fig/rado of ∆ .
= perr(DRL)−minj perr(Pj) (left)

and q = prop. peers simultaneously beaten by DRL (right) as a function of the number
of peers p and the number of shared features dim(J ). On mice, minj perr(Pj) = 0.30.
Top: proportion of shared examples ps = 0.0 (VP); bottom: proportion of shared
examples ps = 0.2 (G). The isoline on the left fig/rado is ∆ = 0.
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Table 7.4: Results on domain musk, using the same convention as Table 7.3. On
musk, minj perr(Pj) = 0.25
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that DRL indeed successfully bypasses entity matching to learn a classifier that al-
most matches the Oracle’s performances, and therefore represents a very significant
leverage of each peer’s data.

For more detailed results, Table 7.2 (left) displays that binning indeed does not
affect significantly DRL on average, which is also good news, since it means that there
is no restriction on the shared features for DRL to perform well: shared features can
be binary, or categorical with any number of modalities. Table 7.7 displays that while
the CV tuning of Γ offers leverage to DRL (vs Γ = Idd) in general (firmteacher), there
are some (rare) domains (mice) on which relying on the simplest Γ = Idd improves
upon the results of CV. This, we believe, comes from the fact that CV as we have
carried out is certainly not optimal because one rado can aggregate any number of
examples. Finally, Table 7.2 (right) drills down a bit more into the performances
of DRL with respect to those of the Oracle on a domain for which DRL obtains
somehow “median” performances among all domains, sonar. The Oracle (10-folds
CV from the total ER’ed S) is idealistic since in general we do not know the solution
to ER, yet it gives clues on how close DRL may be from the “grail”. Interestingly,
DRL comes frequently under the statistical significance radar (α = 0.05). In notable
cases (more frequent as ps increases), DRL beats Oracle — but not significantly. Aside
from theory, these are good news as DRL does not assume ER’ed data, and uses an
amount of data which can be ∼ p2 times smaller than Oracle.

7.6 Discussion and references

We remark that our framework is not formally comparable with ER, since the two
address different problems. On the one hand, ER has a much broader applicability
than the problem we are interested in here; learning on distributed datasets is less
general than ER: in fact, we show a solution that bypasses ER. On the other hand,
learning-based ER [Bilenko and Mooney, 2003] as well as manifold alignment tech-
niques [Lafon et al., 2006] are viable only knowing some ground truth matches —
which are not required for working with rados. From another perspective, in concert
with the open issues in Getoor and Machanavajjhala [2012], we study ER as compo-
nent of a pipeline for classification, and highlight how matching is not necessary for
the purpose of learning.

In spite of those considerations, we can still draw comparisons with methods
that learn on top of data merged through ER (Table 7.5). In both settings, no ID is
shared between datasets but some attributes must be so, in order to allow entities
comparison for matching or for building rados. Obviously, entity matching does not
require the labels to be one of those shared attributes, while this is a fundamental
hypothesis of our approach. Although, it is not as restrictive as it might seem at
first: if just one peer has labels, then all can obtain labels on their own data, via
learning from label proportions (Chapter 4): the label handling peer computes the
label proportions per each block; the “bags” are defined by examples matching a
particular signature. Proportions are then shared among all other peers, which can
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metric ER + learning Algorithms 11+12

Hp: shared IDs no no
Hp: shared variables necessary necessary
Hp: shared labels no may be relaxed
Fusion / Rados crafting O(m2/m?Tsim) O(m)
Communication m× d m? × d
Learning problem m× d m? × d
Privacy complex many guarantees

Table 7.5: Multiple metrics of comparison between learning on top of ER and our
approach. Time complexity are estimated for 2 peers in the (VP) scenario, assuming
all blocks of equal size. “Hp” is short for hypothesis. See Section 7.6 for details.

train a classifier with them so as to estimate a label for each observation.
To discuss time complexity, let us consider a simplified problem with only 2 peers

with m examples each in the (VP) scenario. In terms of complexity of fusion, if we
assume that examples are uniformly distributed in the blocks, each block has size
m/m? (m? is the number of blocks). DRL builds each block rado in time O(m/m?),
with total cost linear in m. ER takes O((m/m?)2 · Tsim) to match entities in each of
the m? blocks, where Tsim is the cost of evaluation any similarity function; learning-
based methods spend additional time for training; advanced blocking strategies can
reduce the average complexity [Bilenko et al., 2006; Whang et al., 2009; Whang and
Garcia-Molina, 2012].

Most literature on distributed learning is concerned with limiting communication
and designing optimal strategies for merging models [Balcan et al., 2012; Liu and
Ihler, 2014]; beside that, previous works focus on horizontal split by observations,
with few exceptions [Liu and Ihler, 2012]. In contrast, we exploit what is sufficient to
merge about the data. The communication protocol is extremely simple. Once rados
are crafted locally, they are sent to a central learner in one shot. By Theorem 73, only
d-dimensional m? block rados are needed. Data is not accessed anymore and learning
takes place centrally. Moreover, rados help with data compression, being m? × d,
m? � m the problem size. ER needs to transfer and learn from all entities, for a total
size of m× d.

Learning on data described by different feature sets is the topic of multiple view
learning and co-training [Blum and Mitchell, 1998; Sindhwani et al., 2005]. To the
best of our knowledge, co-training with unknown matches has not been addressed
before. Brefeld et al. [2006] present a multi-view distributed algorithm with co-
regularization; although it requires matches for all unlabeled examples.

In settings with multiple data providers, privacy can be crucial [Balcan et al.,
2012]. The peers have to trade off model enhancements and information leaks. A
learner receives rados to train the model; this can be done by one of the peers, or
by a third party — paralleling multi-party ER scenarios [Christen, 2006]. The only
information sent through the channel consists of rados, while examples, with their
individual sensitive features, are never shared. Computational complexity results
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on reconstruct-ability of examples have been proven in Nock et al. [2015], along
with NP-hard characterizations, and protection in the sense of differential privacy
[Dwork, 2011; Dwork and Roth, 2013]. Regarding ER, since matching has the poten-
tial of de-anonymizing the entities, privacy is usually a very relevant issue to address
[Christen, 2006]. However, solutions are not straightforward, as proven by the vast
amount of research on the topic [Vatsalan et al., 2013]. Techniques based on partial
share of attributes, anonymization or hashing can severely impair the process.

The key message of the Chapter is that entity matching addresses a very gen-
eral and difficult problem but, in the comparatively restricted context of supervised
learning from distributed datasets, accurate learning evading the pitfalls of entity
matching is possible with Rademacher observations. Rados have another advan-
tage: they offer a cheap, easily parallelizable material which somehow “compresses”
examples while allowing accurate learning. They also offer a readily available solu-
tion for guaranteed private exchange of data in a distributed setting. Finally, some
domains display that there is significant room space for improvement of how cross-
validation of optimized parameters is performed. This interesting problem comes in
part from the fact that statistical properties of cross-validation on rados are not the
same as when carried out on examples; see the recent study of Nock [2016].
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7.7 Appendix: proofs

7.7.1 Proof of Theorem 68

First, we remark that EΣm [〈θ, πσ〉] = 〈θ, EΣm [πσ ]〉 = (1/2) · 〈θ, π〉, since each ex-
ample participates to half of the 2m rados. Letting v .

= 2m+2 ·VΣm [〈θ, πσ〉], we also
have:

v = 4 · ∑
σ∈Σm

(
〈θ, πσ〉 −

1
2
· 〈θ, π〉

)2

(7.22)

= ∑
σ∈Σm

(
∑

i
σi〈θ, xi〉

)2

(7.23)

= ∑
σ∈Σm

[
m

∑
i=1
〈θ, xi〉2 +

e

∑
i=1

m ∑
i′ 6=i

σiσi′〈θ, xi〉〈θ, xi′〉
]

(7.24)

= 2m ·
m

∑
i=1
〈θ, xi〉2 +

m

∑
i=1

∑
i′ 6=i

vii′ · 〈θ, xi〉θ>xi′ , (7.25)

with vii′
.
= ∑σ∈Σm

σiσi′ . For any i 6= i′, σiσi′ takes exactly the same number of times
value +1 and value −1, and so vii′ = 0, ∀i 6= i′. We get from Equation 7.25:

VΣm [〈θ, πσ〉] = (1/4) ·
m

∑
i=1
〈θ, xi〉2 = (1/4) ·

m

∑
i=1

(yi〈θ, xi〉)2 . (7.26)

Finally,

1− 2
m
·

m

∑
i=1

yi〈θ, xi〉+
1
m
·

m

∑
i=1

(yi〈θ, xi〉)2 =
1
m
·∑

i
(1− yi〈θ, xi〉)2

2 . (7.27)

7.7.2 Proof of Lemma 69

As with the sufficiency of mean operator, we need to show the double implication
that defines sufficiency for (x, y). This is trivial by applying Theorem 68.

7.7.3 Proof of Theorem 72

We give a proof sketch. Once three simple facts are established in the (VP) setting,
the Theorem follows. (a) The ground truth entity matching exists. (b) Any BB rado
for pair (s, y) would be obtained as a rado summing the contributions of all examples
in S matching the corresponding signature s and class y. (c) We obtain RB ⊆ RS ,Σm ,
from which follows the Theorem’s statement with Equation (7.18) and the fact that
any sum of a subset of rados in RB would also be in RS ,Σm since an example cannot
match two distinct couples (signature, class).
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features
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example(s) shared between peers 1 and 2

⊥
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Figure 7.3: Schematic view of our setting, with p = 3 peers. Some features (cyan)
are described in each peer and one of these shared features is a class. Non-shared
features are split among peers. The total sample S is figured by the red rectangle.
In the more general setting (G), it is not known whether one example, viewed by a
peer, also exists in other peers’ datasets. In this case, there may be a lot of missing
data (⊥), but it is not known of which examples.

7.7.4 Proof of Theorem 73

The proof uses the following trick: consider any sample S ′ such that its edge vectors
match the basic block rados. Remark that XX> = ∑i(yixi)(yixi)

> in Equation (7.5)
depends only on edge vectors. Thus, since π = B1, the optimal square loss classifier
on S ′ is θ̂ in Equation (7.18), which, through Theorem 68, is also the optimal classifier
of the empirical risk associated with M-loss.

7.8 Appendix: extension to the more general setting

We extend here the algorithms from Section 7.4 to setting (G). Figure (7.3) depicts
this more challenging learning setting. We do not assume that the peers handle the
same examples, and therefore m ≥ mj, ∀j ∈ [p]. However, hypothesis (7A) still holds,
that is, the peers share the same set of features.

The definition of rados itself needs to be upgraded first. In the (VP) setting we
could avoid an obvious complication that we face here: in the computation of the
basic block rados, we need to rescale the signature in order to take into account
differences in the number of examples per block for each peer. First, we redefine the
rados, by a projection onto the set of features that are not shared among peers.
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peer 1

peer 3peer 2

rado crafting

(s, y)

π2
(s,y)

π3
(s,y)

π1
(s,y)

c ∈ Nd−dim(J)

Figure 7.4: Communication for one BB rado, with (s, y) ∈ J∗. Counter c is defined
in Algorithm RadoCraft (see text).

Definition 74. For any s ∈ J , y ∈ {−1, 1} and Pj, a rado is:

π
j
(s,y)

.
= projX j\J

( mj

∑
i=1

1
projJ (xj

i)=s∧yj
i=yyj

i · x
j
i

)
. (7.28)

The definition of u-basic block rados follows.

Definition 75. For any s ∈ J , y ∈ {−1, 1}, u ∈ R, the u-basic block (BB) rado for pair
(s, y) is:

π(s,y,u)
.
= u · liftX (y · s) +

p

∑
j=1

liftX (π
j
(s,y)) . (7.29)

The set of block rados is upgraded accordingly. Recall that J∗ .
= {(s, y) ∈ J ×

{−1, 1} : ∃j ∈ [p], π
j
(s,y) 6= 0} and that m∗

.
= |J∗|. Then, for any u ∈ Rm∗ , we let:

Ru
B

.
= {πui

vi
, ∀i ∈ [m∗]} (7.30)

denote the set of each ui-BB rado, each coordinate of u being in one-one correspon-
dence with an element of J∗ (represented by vi). Finally, the set of u-block rados
is:

Ru
∗

.
=

{
∑
i∈U

πui
vi

, ∀U ⊆ [m∗]

}
. (7.31)

We state (without proof) that in the general settings (G) there exists u ∈ Rm∗

such that Ru
∗ belongs to RS ,Σm in expectation. This is now obviously more difficult
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Algorithm 13: RadoCraft(P1,P2, ...,Pp)

Input Peers P1,P2, ...,Pp

Ru
B ← ∅

for s ∈ J , y ∈ {±1}
π(s,y) ← 0 ∈ Rd, c← 0 ∈Nd−dim(J );
for j ∈ [p]

π(s,y) ← π(s,y) + liftX (craft(s, y) Pj)

u← (1>c) (d− dim(J ))−1

Ru
B ← Ru

B ∪ (u · liftX (y · s) + π(s,y))
Return Ru

B

to tackle than in Theorem 72, since there may be a large amount of missing data
(⊥ in Figure 7.2) and there would be no one-one correspondence between the peers’
examples in general. Yet, there is a interesting property which can be shown in the
following (R)andomized model: each peer’s features remain fixed but there exists a
fixed η ∈ [0, 1]m such that example i has probability ηi to be seen by a peer. Let S
denote the “expected” sample, where each example is weighted by its probability.
For any signature s and class y, E[π(s,y)] denotes the expected rado put in Ru

B in
Algorithm 13.

Theorem 76. Under (R), ∀(s, y) ∈ J∗, E[π(s,y)] ∈ RS ,Σm
.

Therefore, under setting (G), if examples are “seen” independently at random by
peers, the expected output of Algorithm 13 still meets the guarantees of Theorem 72
with respect to the expected sample. The fact that Ru

B ⊆ RS ,Σm from Theorem 72 is
also a consequence of Theorem 76 for η = 1.

Algorithm 13 is a variation of the original Algorithm 11 which takes care of the
computation of u. Specifically, Pj does the following:

• it computes and return π
j
(s,y); let Cj be the number of examples that are counted

in the sum in Equation (7.28);

• it updates counter vector c: for each feature k 6∈ J it possesses in its local
dataset, it does ck ← ck + Cj;

Letting vi
.
= (s, y) ∈ J∗, the corresponding value of ui is given by:

ui
.
= (1>c)(d− dim(J ))−1 , (7.32)

which is guaranteed to be non-zero since vi ∈ J∗.
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7.9 Appendix: additional experimental results

domain m d minj perr(Pj) p dim(J ) results

Wine 178 12 0.07 {2, 3, ..., 8} {1, 2, 3, 4} Table 7.15
Sonar 208 60 0.29 {2, 3, ..., 16} {1, 2, ..., 20} Table 7.9
Ionosphere 351 33 0.20 {2, 3, ..., 9} {1, 2, ..., 9} Table 7.11
Mice 1 080 77 0.30 {2, 3, ..., 20} {1, 2, ..., 20} Table 7.3
Winered 1 599 11 0.26 {2, 3, ..., 7} {1, 2, 3, 4} Table 7.12
Steelplates 1 941 33 0.16 {2, 3, ..., 14} {1, 2, ..., 5} Table 7.18
Statlog 4 435 36 0.05 {2, 3, ..., 30} {1, 2, ..., 5} Table 7.17
Winewhite 4 898 11 0.32 {2, 3, ..., 7} {1, 2, 3, 4} Table 7.13
Page 5 473 10 0.21 {2, 3, ..., 6} {1, 2, 3, 4} Table 7.8
Musk 6 598 166 0.25 {2, 3, ..., 50} {1, 2, 3, 5} Table 7.4
Firmteacher 10 800 16 0.26 {2, 3, ..., 7} {1, 2, ..., 7} Table 7.10
Phishing 11 055 30 0.11 {2, 3, 4, 5} {1, 2, 3, 4} Table 7.14
Credit card 14 599 23 0.32 {2, 3, ..., 18} {1, 2, ..., 5} Table 7.16

Table 7.6: UCI domains used in our experiments Bache and Lichman [2013], with for
each the indication of the total number of features (d), examples (m) and the error
of the optimal peer in hindsight obtained in our experiments, minj perr(Pj). Two of
the right columns present, for each domain, the range of values for the number of
peers (p) and the number of shared features (dim(J )) considered. Experiments are
performed considering all possible combinations of values of p and dim(J ) within
the allocated sets. The rightmost column points to the Table collecting specific results
for each domain.

I
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Table 7.7: Results of the dummy regularized DRL (Γ = Idd) on domains firmteacher
(left) and mice (right), following the convention of Table 7.11 (ps = 0.2).
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Table 7.8: Results on domain sonar, using the same convention as Table 7.3.
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Table 7.9: Results on domain sonar, using the same convention as Table 7.3.
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Table 7.10: Results on domain firmteacher, using the same convention as Table 7.3.
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Table 7.11: Results on domain ionosphere, using the same convention as Table 7.3.
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Table 7.12: Results on domain winered, using the same convention as Table 7.3.
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Table 7.13: Results on domain winewhite, using the same convention as Table 7.3.
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Table 7.14: Results on domain phishing, using the same convention as Table 7.3.



162 Learning from vertically distributed data without entity matching
p s

=
0.

0

 2  3  4  5  6  7  8
#peers  1

 2

 3

 4

#shared

-0.05
 0

 0.05
 0.1

∆

p s
=

0.
2

 2  3  4  5  6  7  8
#peers  1

 2

 3

 4

#shared

-0.08
-0.05
-0.02
 0.01
 0.04
 0.07

∆

Table 7.15: Results on domain wine, using the same convention as Table 7.3.
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Table 7.16: Results on domain creditcard, using the same convention as Table 7.3.
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Table 7.17: Results on domain statlog, using the same convention as Table 7.3.
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Table 7.18: Results on domain steelplates, using the same convention as Table 7.3.
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Chapter 8

Conclusion

Research is seldom a linear path that proceeds from an open problem to its resolu-
tion and this Thesis is no exception. The presentation has not strictly followed the
chronological order — by publication date of each respective piece of work.

This research journey originated from reasoning on how a classifier may be
trained efficiently from label proportions and to do so without resorting to restric-
tive previous assumptions. The empirical success of Patrini et al. [2014] brought to
question whether the proposed framework was viable at the larger extent of weakly
supervised problems. A more abstract and mature view was later published in Pa-
trini et al. [2016a] from which, in retrospective, we could have subsumed the case of
LLP itself. The content of Chapter 3 and 4 is taken from those publications.

The scenario of learning with noisy labels was analyzed in Patrini et al. [2016a]
to reinforce that our approach is also suited for solving the more common and well
studied learning problem (Chapter 5). Patrini et al. [2017] deepens the experimental
analysis bringing us closer to mainstream deep learning applications (Chapter 6)
and also constitutes the major empirical effort of the Thesis in showing the practical
outcome of our work on real world problems – for examples in Vision and Language.

At first sight, the problem of learning from vertically distributed datasets elab-
orated in Patrini et al. [2016b] has little relation to our framework. The peculiar
setting was inspired discussing business needs of some of our collaborators involved
in building start-up products. Yet we could carve a solution to this demanding ap-
plication out of our conceptual framework (Chapter 7).

It is therefore evident that the core contribution of this Thesis is methodological.
Most of the algorithmic content has revolved around the idea of casting problems
with weak supervision into the two-step approach of sufficient statistic estimation
followed by standard “fully” supervised learning. Different assumptions and pro-
cedures are required for the estimation of the sufficient statistic and we have de-
tailed how to operate in several settings, as recalled above. The effectiveness of this
modus operandi, by virtue of abstraction and adaptivity to several learning scenar-
ios, suggests that our insight should open new ways for solving other challenging
non-standard Machine Learning problems. In fact, the framework already unifies a
growing body of literature [Quadrianto et al., 2009; Gao et al., 2016; Raghunathan
et al., 2016].

There are similarities with many principles of traditional Software Engineering.
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Decoupling is essential for analyzing a complex problem and attacking it via a divide
and conquer strategy. We have treated the “label issue” in a modular fashion, sepa-
rated from the learning process. We do not reinvent the wheel and instead we resort
to well known optimization methods: gradient descent/L-BFGS (Algorithm 5), SGD
and proximal algorithms (Algorithms 9 and 3), back-propagation (Algorithm 10) and
the closed form solution for square loss by matrix inversion (Algorithm 12).

Ultimately, we should never be solving a more general problem than the one we
are interested in the first place – i.e. estimating the latent variable is not a necessary
step [Vapnik, 1998; Joulin and Bach, 2012]. We have given another important example
in the introduction of Chapter 7, where we have motivated the need of bypassing the
expensive and error prone step of entity resolution. This is precisely the glorified
role of sufficient statistics, borrowed from statistical modeling and here fitted into
Learning Theory; in the Thesis, we have entitled the mean operator and Rademacher
observations of such power. We may also think of those statistics as compressing
information that allows us to save computational time for learning.

Those insights challenge the literature which is dominated by problem specific
solutions, where either loss functions or optimization algorithms are re-designed to
handle the lack of supervision. We believe that our proposal takes the right direction
of rethinking Machine Learning, that is historically “more akin to a craft that an
engineering discipline” [Williamson, 2009]. We have also interpreted our framework
as a family of learning reductions [Beygelzimer et al., 2005, 2015].

Theoretical arguments constitute a large section of the Thesis. The Factorization
Theorem 18 underpins many of them. We have seen how problem agnostic gener-
alization bounds (Theorem 23) can be easily tailored to LLP and ALN (Theorems
43 and 53). The shape of linear-odd losses, and in particular of symmetric proper
losses in Chapter 4, has allowed further manipulation. We have formulated data de-
pendent finite sample bounds on learning linear models (Theorems 26) and we have
characterized a form of distribution dependent noise robustness (Theorem 56).

Aside from those results, Theorem 46 expresses generalization bounds that take
into account both a more suited definition of Rademacher complexity and a novel
complexity measure of the problem, related to the variance of the label proportions;
these ideas are new. Surprisingly, Loss Factorization was also the key ingredient for
proving that the loss curvature of ReLU networks is immune to label noise (Theorem
64).

More empirical investigation is required to confirm the practical implications of
the algorithms for LLP. The success we have obtained on UCI domains — with syn-
thetized bags — is promising for real world applications, where we believe that the
relaxed assumption (A1), Chapter 4, may be well justified. In some cases we have
obtained surprisingly good performance with AMM (Algorithm 6). The Algorithm
— which admittedly does not fit into the two-step framework, but it takes advantage
of it via LMM (Algorithm 5) — should be effective in practice, at least in scenarios
where linear models can bring good predictive power, in the vein of Mohammady
and Culotta [2014]; Ardehaly and Culotta [2015]. In fact, we believe that LLP will
have the largest impact in the future on this class of prediction problems, where
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features and labels represent people sensitive attributes and behavior.
It is well known that personal attributes such as the one recorded in social net-

works are highly predictive of sensitive traits [Kosinski et al., 2013]. In turn, such
private variables, e.g. electoral behavior, sexual preference, likelihood of contract-
ing a disease or committing a crime, are often publicly available given by aggregate
as recorded by governments and polling institutions, e.g. the census. This can be
thought as a scenario for LLP. High predictive performance can be particularly prob-
lematic in this context. Owners of large assets of personal data would be able to infer
ever more sensitive attributes of their own users or customers, information that has
potentially never been shared or recorded elsewhere. Researchers working on LLP
have discussed such potentially severe implications [Quadrianto et al., 2009; Yu et al.,
2014b]. Yet we are not aware of any experimental evaluation on real world datasets;
more research is needed on this front.

Most of the results presented, both from the algorithmics and the theory, is sup-
ported by the Factorization Theorem 18 — or the intimately related Theorem 68. It
tells us that losses decompose in a way that we can isolate the contribution of supervi-
sion into a sufficient statistic. An intriguing open question is whether Factorization
could help to identify what really matters in learning that is instead completely unsu-
pervised [Sutskever et al., 2015].



168 Conclusion



Bibliography

Altun, Y. and Smola, A. J., Unifying divergence minimization and statistical infer-
ence via convex duality. In COLT, 2006. (cited on pages 29, 39, and 103)

Andrews, S.; Tsochantaridis, I.; and Hofmann, T., Support vector machines for
multiple-instance learning. In NIPS, 2002. (cited on page 18)

Ardehaly, E. M. and Culotta, A., Inferring latent attributes of twitter users with
label regularization. In HLT, 2015. (cited on pages 18, 52, and 166)

Ardehaly, E. M. and Culotta, A., Domain adaptation for learning from label pro-
portions using self-training. In IJCAI, 2016. (cited on page 103)

Auer, P.; Cesa-Bianchi, N.; and Fischer, P., Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47, 2-3 (2002), 235–256. (cited on page 18)

Bach, F.; Jenatton, R.; Mairal, J.; and Obozinski, G., Optimization with sparsity-
inducing penalties. Foundations and Trends R© in Machine Learning, 4, 1 (2012), 1–106.
(cited on page 31)

Bache, K. and Lichman, M., 2013. UCI machine learning repository. http://archive.
ics.uci.edu/ml. (cited on pages 65, 147, and 157)

Balcan, M. F.; Blum, A.; Fine, S.; and Mansour, Y., Distributed learning, commu-
nication complexity and privacy. arXiv:1204.3514, (2012). (cited on page 151)

Bartlett, P. L.; I, M. I. J.; and McAuliffe, J. D., Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101, 473 (2006), 138–156.
(cited on page 13)

Bartlett, P. L. and Mendelson, S., Rademacher and gaussian complexities: Risk
bounds and structural results. JMLR, 3 (2002). (cited on pages 10, 49, and 83)

Belkin, M.; Niyogi, P.; and Sindhwani, V., Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. JMLR, 7 (2006),
2399–2434. (cited on pages 17, 56, and 57)

Bengio, Y.; Delalleau, O.; and Roux, N. L., Label propagation and quadratic crite-
rion. Semi-supervised learning, 10 (2006). (cited on page 17)

Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Stat. Society. Series
B, 57, 1 (1995), 289–300. (cited on page 148)

169

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


170 BIBLIOGRAPHY

Bernstein, G. and Sheldon, D., Consistently estimating markov chains with noisy
aggregate data. In AISTATS, 2016. (cited on page 18)

Beygelzimer, A.; Dani, V.; Hayes, T.; Langford, J.; and Zadrozny, B., Error limiting
reductions between classification tasks. In ICML, 2005. (cited on pages 50 and 166)

Beygelzimer, A.; III, H. D.; Langford, J.; and Mineiro, P., Learning reductions that
really work. arXiv:1502.02704, (2015). (cited on pages 50 and 166)

Bhowmik, A.; Ghosh, J.; and Koyejo, O., Generalized linear models for aggregated
data. In AISTATS, 2015. (cited on pages 51 and 103)

Bilenko, M.; Basu, S.; and Mooney, R. J., Integrating constraints and metric learning
in semi-supervised clustering. In ICML, 2004. (cited on page 16)

Bilenko, M.; Kamath, B.; and Mooney, R. J., Adaptive blocking: Learning to scale
up record linkage. In ICDM, 2006. (cited on page 151)

Bilenko, M. and Mooney, R. J., Adaptive duplicate detection using learnable string
similarity measures. In KDD, 2003. (cited on pages 138 and 150)

Bleiholder, J. and Naumann, F., Data fusion. ACM Computing Surveys (CSUR), 41,
1 (2008), 1. (cited on pages 138 and 139)

Blum, A. and Chawla, S., Learning from labeled and unlabeled data using graph
mincuts. In ICML, 2001. (cited on page 18)

Blum, A. and Mitchell, T., Combining labeled and unlabeled data with co-training.
In COLT, 1998. (cited on pages 18 and 151)

Brefeld, U.; Gärtner, T.; Scheffer, T.; and Wrobel, S., Efficient co-regularised
least squares regression. In ICML, 2006. (cited on page 151)

Chang, M. W.; Ratinov, L.; and Roth, D., Guiding semi-supervision with
constraint-driven learning. In ACL, 2007. (cited on page 18)

Chapelle, O.; Schölkopf, B.; and Zien, A., 2006. Semi-supervised learning. MIT press
Cambridge. (cited on pages 15 and 17)

Chen, B. C.; Chen, L.; Ramakrishnan, R.; and Musicant, D. R., Learning from
aggregate views. In ICDE, 2006. (cited on pages 51 and 102)

Chen, S.; Liu, B.; Qian, M.; and Zhang, C., Kernel k-means based framework for
aggregate outputs classification. In ICDMW, 2009. (cited on pages 52 and 102)

Chen, Z.; Qi, Z.; Wang, B.; Cui, L.; Meng, F.; and Shi, Y., Learning with label pro-
portions based on nonparallel support vector machines. Knowledge-Based Systems,
(2016). (cited on page 102)

Cho, W.-K.-T. and Manski, C.-F., Cross level/ecological inference. Oxford Handbook
of Political Methodology, (2008), 547–569. (cited on page 104)



BIBLIOGRAPHY 171

Christen, P., Privacy-preserving data linkage and geocoding: Current approaches
and research directions. In ICDMW, 2006. (cited on pages 138, 151, and 152)

Christen, P., 2012. Data Matching Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer Data-Centric Systems and Applica-
tions. (cited on page 138)

Cour, T.; Sapp, B.; and Taskar, B., Learning from partial labels. JMLR, (2011), 1501–
1536. (cited on page 15)

Cross, P.-J. and Manski, C.-F., Regressions, short and long. Econometrica, 70, 1 (2002),
357–368. (cited on page 104)

Cui, L.; Qi, Z.; and Meng, F., A proportion learning algorithms with density peaks.
Procedia Computer Science, 91 (2016), 841–846. (cited on page 102)

Dai, A. M. and Le, Q. V., Semi-supervised sequence learning. In NIPS, 2015. (cited
on page 127)

de Sa, V. R., Spectral clustering with two views. In ICML Workshop on Learning with
Multiple Views, 2005. (cited on page 18)

Dietterich, T. G.; Lathrop, R. H.; and Lozano-Pérez, T., Solving the multiple
instance problem with axis-parallel rectangles. Artificial Intelligence, 89 (1997), 31–
71. (cited on page 15)

Ding, N. and Vishwanathan, S. V. N., t-logistic regression. In NIPS, 2010. (cited
on pages 17 and 118)

Divvala, S.; Farhadi, A.; and Guestrin, C., Learning everything about anything:
Webly-supervised visual concept learning. In CVPR, 2014. (cited on page 105)

du Plessis, M. C.; Niu, G.; and Sugiyama, M., Convex formulation for learning from
positive and unlabeled data. In ICML, 2015. (cited on pages viii, 15, 26, 47, and 48)

Duchi, J.; Hazan, E.; and Singer, Y., Adaptive subgradient methods for online
learning and stochastic optimization. JMLR, 12 (2011), 2121–2159. (cited on page
127)

Duncan, O. D. and Davis, B., An alternative to ecological correlation. American
sociological review, (1953), 665–666. (cited on page 104)

Dwork, C., 2011. Differential privacy. In Encyclopedia of Cryptography and Security,
338–340. Springer. (cited on page 152)

Dwork, C. and Roth, A., The algorithmic foundations of differential privacy. Theo-
retical Computer Science, 9, 3-4 (2013), 211–407. (cited on page 152)



172 BIBLIOGRAPHY

Estrada, T.; Armen, R.; and Taufer, M., Automatic selection of near-native protein-
ligand conformations using a hierarchical clustering and volunteer computing. In
International Conference on Bioinformatics and Computational Biology, 2010. (cited on
page 138)

Fan, K.; Zhang, H.; Yan, S.; Wang, L.; Zhang, W.; and Feng, J., Learning a genera-
tive classifier from label proportions. NeuroComputing, 139 (2014), 47–55. (cited on
page 102)

Fergus, R.; Fei-Fei, L.; Perona, P.; and Zisserman, A., Learning object categories
from internet image searches. Proceedings of the IEEE, 98, 8 (2010), 1453–1466. (cited
on page 105)

Flaxman, S.-R.; Wang, Y.-X.; and Smola, A.-J., Who supported obama in 2012?:
Ecological inference through distribution regression. In KDD, 2015. (cited on page
104)

Foulds, J. and Frank, E., A review of multi-instance learning assumptions. The
Knowledge Engineering Review, 25, 01 (2010), 1–25. (cited on page 16)

Frénay, B. and Verleysen, M., Classification in the Presence of Label Noise: A
Survey. IEEE Transactions on Neural Networks and Learning Systems, 25, 5 (May
2014), 845–869. (cited on page 118)

Ganchev, K.; Graça, J.; Gillenwater, J.; and Taskar, B., Posterior regularization
for structured latent variable models. JMLR, 11 (2010), 2001–2049. (cited on page
18)

Gao, W.; Wang, L.; Li, Y. F.; and Zhou, Z. H., Risk minimization in the presence of
label noise. In AAAI, 2016. (cited on pages 29, 49, and 165)

Garcia-Garcia, D. and Williamson, R. C., Degrees of supervision. In NIPS Work-
shops, 2011. (cited on page 18)

Getoor, L. and Machanavajjhala, A., Entity resolution: theory, practice & open
challenges. Proceedings of the VLDB Endowment, 5, 12 (2012), 2018–2019. (cited on
page 150)

Ghosh, A.; Manwani, N.; and Sastry, P. S., Making risk minimization tolerant to
label noise. Neurocomputing, 160 (2015), 93–107. (cited on pages 17, 105, 110, 118,
and 128)

Glorot, X. and Bengio, Y., Understanding the difficulty of training deep feedfor-
ward neural networks. In AISTATS, 2010. (cited on page 129)

Grandvalet, Y. and Bengio, Y., Semi-supervised learning by entropy minimization.
In NIPS, 2004. (cited on page 17)



BIBLIOGRAPHY 173

He, K.; Zhang, X.; Ren, S.; and Sun, J., Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015. (cited on
page 127)

He, K.; Zhang., X.; Ren, S.; and Sun, J., Deep residual learning for image recogni-
tion. In CVPR, 2016a. (cited on pages 120, 128, and 129)

He, K.; Zhang, X.; Ren, S.; and Sun, J., Identity mappings in deep residual networks.
In ECCV, 2016b. (cited on pages 120 and 128)

Hernández, J. and Inza, I., Learning naive bayes models for multiple-instance learn-
ing with label proportions. In Conference of the Spanish Association for Artificial Intel-
ligence, Springer, 2011. (cited on page 102)

Hernández-González, J.; Inza, I.; Crisol-Ortíz, L.; Guembe, M. A.; Iñarra, M. J.;
and Lozano, J. A., Fitting the data from embryo implantation prediction: Learning
from label proportions. Statistical methods in medical research, (2016). (cited on page
51)

Hernandez-Gonzalez, J.; Inza, I.; and Lozano, J., 2016. Weak supervision and
other non-standard classification problems: a taxonomy. In PRL. Elsevier. (cited
on page 16)

Hernández-González, J.; Inza, I.; and Lozano, J. A., Learning bayesian network
classifiers from label proportions. Pattern Recognition, 46, 12 (2013), 3425–3440.
(cited on page 102)

Hernández-González, J.; Inza, I.; and Lozano, J. A., A novel weakly supervised
problem: Learning from positive-unlabeled proportions. In Conference of the Spanish
Association for Artificial Intelligence, Springer, 2015. (cited on page 103)

Hernández-González, J.; Inza, I.; and Lozano, J. A., Learning from proportions of
positive and unlabeled examples. International Journal of Intelligent Systems, (2016).
(cited on page 103)

Hochreiter, S. and Schmidhuber, J., Long short-term memory. Neural computation,
9, 8 (1997), 1735–1780. (cited on page 120)

Hope, T. and Shahaf, D., Ballpark learning: Estimating labels from rough group
comparisons. In ECML-PKDD16, 2016. (cited on page 103)

Horn, R. A. and Johnson, C. R., 2012. Matrix analysis. Cambridge university press.
(cited on pages 70 and 71)

Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; and Weinberger, K., Deep networks with
stochastic depth. In ECCV, 2016. (cited on page 128)

Ioffe, S. and Szegedy, C., Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, 2015. (cited on page 120)



174 BIBLIOGRAPHY

Jaakkola, T. S. and Jordan, M. I., Bayesian parameter estimation via variational
methods. Statistics and Computing, 10, 1 (2000), 25–37. (cited on page 49)

Janzing, D.; Peters, J.; Sgouritsa, E.; Zhang, K.; Mooij, J. M.; and Schölkopf, B.,
On causal and anticausal learning. In ICML, 2012. (cited on page 17)

Joachims, T., Transductive inference for text classification using support vector ma-
chines. In ICML, 1999. (cited on page 17)

Joulin, A. and Bach, F. R., A convex relaxation for weakly supervised classifiers. In
ICML, 2012. (cited on pages 18 and 166)

Judge, G. G.; Miller, D. J.; and Cho, W. K. T., 2004. An information theoretic ap-
proach to ecological estimation and inference. In Ecological inference: New method-
ological strategies, 162–187. Cambridge University Press. (cited on page 104)

Kakade, S. M.; Sridharan, K.; and Tewari, A., On the complexity of linear predic-
tion: Risk bounds, margin bounds, and regularization. In NIPS, 2009. (cited on
pages 10 and 49)

Kawaguchi, K., Deep learning without poor local minima. In NIPS, 2016. (cited on
page 126)

Kearns, M., Efficient noise-tolerant learning from statistical queries. Journal of the
ACM, 45 (1998). (cited on page 135)

Kearns, M. J. and Mansour, Y., On the boosting ability of top-down decision tree
learning algorithms. In STOC, 1996. (cited on page 53)

King, G., 1997. A solution to the ecological inference problem: reconstructing individual
behavior from aggregate data. Princeton University Press. (cited on page 104)

King, G.; Tanner, M.-A.; and Rosen, O., 2004. Ecological inference: New methodological
strategies. Cambridge University Press. (cited on page 104)

Kingma, D. P.; Mohamed, S.; Rezende, D. J.; and Welling, M., Semi-supervised
learning with deep generative models. In NIPS, 2014. (cited on page 18)

Kosinski, M.; Stillwell, D.; and Graepel, T., Private traits and attributes are pre-
dictable from digital records of human behavior. PNAS, 110, 15 (2013), 5802–5805.
(cited on page 167)

Kotzias, D.; Denil, M.; Freitas, N. D.; and Smyth, P., From group to individual
labels using deep features. In KDD, 2015. (cited on pages 51 and 102)

Krause, J.; Sapp, B.; Howard, A.; Zhou, H.; Toshev, A.; Duerig, T.; Philbin, J.; and

Fei-Fei, L., The unreasonable effectiveness of noisy data for fine-grained recogni-
tion. In ECCV, 2016. (cited on pages 105, 119, 131, and 135)



BIBLIOGRAPHY 175

Krizhevsky, A. and Hinton, G., Learning multiple layers of features from tiny im-
ages. Technical report, University of Toronto, 2009. (cited on page 126)

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E., Imagenet classification with deep
convolutional neural networks. In NIPS, 2012. (cited on page 129)

Kück, H.; Carbonetto, P.; and de Freitas, N., A constrained semi-supervised learn-
ing approach to data association. In ECCV, 2004. (cited on page 102)

Kuck, H. and de Freitas, N., Learning about individuals from group statistics. In
UAI, 2005. (cited on pages 15, 16, 18, 52, and 102)

Lafon, S.; Keller, Y.; and Coifman, R. R., Data fusion and multicue data matching
by diffusion maps. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28, 11 (2006), 1784–1797. (cited on page 150)

Lai, K. T.; Yu, F.; Chen, M. S.; and Chang, S. F., Video event detection by inferring
temporal instance labels. In CVPR, 2014. (cited on page 52)

Laird, P. D., 1988. Learning from Good and Bad Data. Kluwer Academic Publishers,
Norwell, MA, USA. (cited on page 135)

Lanckriet, G. R. G.; Bie, T. D.; Cristianini, N.; Jordan, M. I.; and Noble, W. S., A
statistical framework for genomic data fusion. Bioinformatics, 20, 16 (2004), 2626–
2635. (cited on page 138)

Lawrence, N. D. and Jordan, M. I., Semi-supervised learning via gaussian pro-
cesses. In NIPS, 2004. (cited on page 18)

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P., Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86, 11 (1998), 2278–2324. (cited
on pages 120 and 126)

Ledoux, M. and Talagrand, M., 1991. Probability in Banach Spaces. Springer Verlag.
(cited on page 89)

Lehmann, E. L. and Casella, G., 1998. Theory of point estimation, vol. 31. Springer
Science & Business Media. (cited on page 15)

Li, F. and Taylor, G., Alter-cnn: An approach to learning from label proportions
with application to ice-water classification. In NIPS Workshop on Learning and pri-
vacy with Incomplete Data and Weak Supervision, 2015. (cited on pages 52 and 102)

Li, Y.-F.; Tsang, I. W.; Kwok, J. T.; and Zhou, Z.-H., Convex and scalable weakly
labeled svms. JMLR, (2013), 2151–2188. (cited on page 18)

Liang, P.; Jordan, M. I.; and Klein, D., Learning from measurements in exponential
families. In ICML, 2009. (cited on pages 18 and 52)



176 BIBLIOGRAPHY

Liu, L.-P. and Dietterich, T. G., Learnability of the superset label learning problem.
In ICML, 2014. (cited on page 15)

Liu, Q. and Ihler, A., Distributed parameter estimation via pseudo-likelihood. In
ICML, 2012. (cited on page 151)

Liu, Q. and Ihler, A. T., Distributed estimation, information loss and exponential
families. In NIPS, 2014. (cited on page 151)

Liu, T. and Tao, D., Classification with noisy labels by importance reweighting. IEEE
Transactions on pattern analysis and machine intelligence, 38, 3 (2016), 447–461. (cited
on pages 124 and 135)

Long, P. M. and Servedio, R. A., Random classification noise defeats all convex
potential boosters. Machine learning, 78, 3 (2010), 287–304. (cited on pages 108,
109, 110, and 118)

Ma, F.; Shi, Y.; Wang, B.; and Chen, Z., Research on the classification of commercial
banks? fund clients based on learning with label proportions. Procedia Computer
Science, 91 (2016), 988–994. (cited on page 51)

Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.; and Potts, C., Learning
word vectors for sentiment analysis. In ACL, 2011. (cited on page 126)

Mann, G. S. and McCallum, A., Generalized expectation criteria for semi-
supervised learning of conditional random fields. In ACL, 2008. (cited on page
18)

Mann, G. S. and McCallum, A., Generalized expectation criteria for semi-
supervised learning with weakly labeled data. JMLR, (2010), 955–984. (cited
on page 18)

Manwani, N. and Sastry, P. S., Noise tolerance under risk minimization. IEEE
Transactions on Cybernetics, 43, 3 (2013), 1146–1151. (cited on pages 108, 110, 116,
and 118)

Markowitz, H., Portfolio selection. Journal of Finance, 6 (1952), 77–91. (cited on page
142)

Masnadi-Shirazi, H.; Mahadevan, V.; and Vasconcelos, N., On the design of
robust classifiers for computer vision. In CVPR, 2010. (cited on pages 17 and 118)

Masnadi-Shirazi, H. and Vasconcelos, N., On the design of loss functions for
classification: theory, robustness to outliers, and savageboost. In NIPS, 2009. (cited
on pages 118 and 128)

McDiarmid, C., Concentration. In Probabilistic Methods for Algorithmic Discrete Math-
ematics, 1–54, Springer Verlag, 1998. (cited on pages 11 and 19)



BIBLIOGRAPHY 177

Menon, A.; Rooyen, B. V.; Ong, C. S.; and Williamson, B., Learning from corrupted
binary labels via class-probability estimation. In ICML, 2015. (cited on pages 16,
118, 120, 124, 127, and 135)

Menon, A.; van Rooyen, B.; and Natarajan, N., Learning from binary labels with
instance-dependent corruption. arXiv preprint arXiv:1605.00751, (2016). (cited on
pages 105, 106, 118, and 131)

Mintz, M.; Bills, S.; Snow, R.; and Jurafsky, D., Distant supervision for relation
extraction without labeled data. In ACL, 2009. (cited on page 15)

Misra, I.; Zitnick, C. L.; Mitchell, M.; and Girshick, R., Seeing through the
human reporting bias: Visual classifiers from noisy human-centric labels. In CVPR,
2016. (cited on page 105)

Mnih, V. and Hinton, G. E., Learning to label aerial images from noisy data. In
ICML, 2012. (cited on pages 119 and 134)

Mohammady, E. and Culotta, A., Using county demographics to infer attributes of
twitter users. In ACL, 2014. (cited on pages 52 and 166)

Musicant, D. J.; Christensen, J. M.; and Olson, J. F., Supervised learning by train-
ing on aggregate outputs. In ICDM, 2007. (cited on pages 51 and 102)

Muzellec, B.; Nock, R.; Patrini, G.; and Nielsen, F., Tsallis regularized optimal
transport and ecological inference. In AAAI, 2017. (cited on page 104)

Natarajan, N.; Dhillon, I. S.; Ravikumar, P. K.; and Tewari, A., Learning with
noisy labels. In NIPS, 2013. (cited on pages 15, 17, 105, 106, 107, 108, 114, 116, 118,
120, 122, and 135)

Ni, T.; Chung, F.-L.; and Wang, S., Support vector machine with manifold regular-
ization and partially labeling privacy protection. Information Sciences, 294 (2015),
390–407. (cited on page 102)

Nigam, K. and Ghani, R., Analyzing the effectiveness and applicability of co-
training. In CIKM, 2000. (cited on page 18)

Nock, R., Learning games and Rademacher observations losses. CoRR,
abs/1512.05244 (2015). (cited on page 142)

Nock, R., On regularizing rademacher observation losses. In NIPS, 2016. (cited on
page 152)

Nock, R. and Nielsen, F., Bregman divergences and surrogates for learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31 (2009), 2048–2059. (cited
on pages 26, 53, and 123)

Nock, R.; Patrini, G.; and Friedman, A., Rademacher Observations, private data
and boosting. In ICML, 2015. (cited on pages 4, 141, 142, 144, and 152)



178 BIBLIOGRAPHY

Park, Y. and Ghosh, J., A probabilistic imputation framework for predictive analysis
using variably aggregated, multi-source healthcare data. In SIGHIT International
Health Informatics Symposium, 2012. (cited on page 103)

Park, Y. and Ghosh, J., Cudia: Probabilistic cross-level imputation using individual
auxiliary information. ACM Transactions on Intelligent Systems and Technology, 4, 4
(2013), 66. (cited on page 103)

Patrini, G.; Nielsen, F.; Nock, R.; and Carioni, M., Loss factorization, weakly
supervised learning and label noise robustness. In ICML, 2016a. (cited on pages
4, 49, and 165)

Patrini, G.; Nock, R.; Hardy, S.; and Caetano, T., Fast learning from distributed
datasets without entity matching. In IJCAI, 2016b. (cited on pages 4 and 165)

Patrini, G.; Nock, R.; Rivera, P.; and Caetano, T., (Almost) no label no cry. In
NIPS, 2014. (cited on pages 4, 29, 53, and 165)

Patrini, G.; Rozza, A.; Menon, A.; Nock, R.; and Qu, L., Making neural networks
robust to label noise: a loss correction approach. In Submitted to CVPR, 2017. (cited
on pages 4 and 165)

Pérez-Ortiz, M.; Gutiérrez, P. A.; Carbonero-Ruz, M.; and Hervás-Martínez, C.,
Learning from label proportions via an iterative weighting scheme and discrimi-
nant analysis. In Conference of the Spanish Association for Artificial Intelligence, 79–88,
Springer, 2016. (cited on page 102)

Platt, J., Probabilistic outputs for support vector machines and comparisons to reg-
ularized likelihood methods. Advances in large margin classifiers, 10, 3 (1999), 61–74.
(cited on pages 10 and 102)

Posnett, D.; Filkov, V.; and Devanbu, P., Ecological inference in empirical software
engineering. In International Conference on Automated Software Engineering, 2011.
(cited on page 104)

Qi, Z.; Wang, B.; Meng, F.; and Niu, L., Learning with label proportions via npsvm.
IEEE Transactions on Cybernetics, (2016). (cited on page 102)

Quadrianto, N.; Smola, A. J.; Caetano, T. S.; and Le, Q. V., Estimating labels from
label proportions. JMLR, 10 (2009), 2349–2374. (cited on pages viii, 23, 29, 49, 51,
52, 53, 55, 63, 66, 77, 102, 103, 165, and 167)

Raghunathan, A.; Frostig, R.; Duchi, J.; and Liang, P., Estimation from indirect
supervision with linear moments. In ICML, 2016. (cited on pages viii, 15, 18, 49,
and 165)

Ramaswamy, H. G.; Scott, C.; and Tewari, A., Mixture proportion estimation via
kernel embedding of distributions. In ICML, 2016. (cited on page 135)



BIBLIOGRAPHY 179

Rasmus, A.; Berglund, M.; Honkala, M.; Valpola, H.; and Raiko, T., Semi-
supervised learning with ladder networks. In NIPS, 2015. (cited on page 17)

Rastogi, V.; Dalvi, N.-N.; and Garofalakis, M.-N., Large-scale collective entity
matching. VLDB, 4, 4 (2011), 208–218. (cited on page 138)

Reed, S.; Lee, H.; Anguelov, D.; Szegedy, C.; Erhan, D.; and Rabinovich, A.,
Training deep neural networks on noisy labels with bootstrapping. ICLR Workshops,
(2015). (cited on pages 119, 128, 134, and 135)

Reid, M. D. and Williamson, R. C., Composite binary losses. JMLR, 11 (2010),
2387–2422. (cited on pages 10, 13, and 123)

Robinson, W.-S., Ecological correlations and the behavior of individuals. American
Sociological Review, 15, 3 (1950), 351–357. (cited on page 104)

Rüping, S., Svm classifier estimation from group probabilities. In ICML, 2010. (cited
on pages 51, 63, and 102)

Samdani, R.; Chang, M.-W.; and Roth, D., Unified expectation maximization. In
HLT, 2012. (cited on page 18)

Sanderson, T. and C. Scott, C., Class proportion estimation with application to
multiclass anomaly rejection. In AISTATS, 2014. (cited on page 135)

Schölkopf, B. and Smola, A. J., 2002. Learning with kernels: Support vector machines,
regularization, optimization, and beyond. MIT press. (cited on page 43)

Schroff, F.; Criminisi, A.; and Zisserman, A., Harvesting image databases from
the web. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 4 (2011),
754–766. (cited on page 105)

Scott, C.; Blanchard, G.; and Handy, G., Classification with asymmetric label
noise : Consistency and maximal denoising. In COLT, 2013. (cited on page 135)

Seeger, M., Learning with labeled and unlabeled data. Technical report, Institute for
ANC, Edinburgh, UK, 2000. (cited on page 18)

Shalev-Shwartz, S. and Ben-David, S., 2014. Understanding machine learning: From
theory to algorithms. Cambridge University Press. (cited on pages 7, 10, and 19)

Shalev-Shwartz, S.; Singer, Y.; Srebro, N.; and Cotter, A., Pegasos: Primal esti-
mated sub-gradient solver for svm. Mathematical programming, 127, 1 (2011), 3–30.
(cited on pages 31 and 111)

Sheldon, D. R. and Dietterich, T. G., Collective graphical models. In NIPS, 2011.
(cited on page 18)

Shi, J. and Malik, J., Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22 (2000), 888–905. (cited on page 58)



180 BIBLIOGRAPHY

Sindhwani, V.; Niyogi, P.; and Belkin, M., A co-regularized approach to semi-
supervised learning with multiple views. In ICML Workshop on Learning with Mul-
tiple Views, 2005. (cited on page 151)

Smola, A.; Gretton, A.; Song, L.; and Schölkopf, B., A Hilbert space embedding
for distributions. In Algorithmic Learning Theory, 13–31, Springer, 2007. (cited on
page 49)

Song, L.; Huang, J.; Smola, A. J.; and Fukumizu, K., Hilbert space embeddings of
conditional distributions with applications to dynamical systems. In ICML, 2009.
(cited on page 49)

Sproull, R. F.; DuMouchel, W. H.; Kearns, M.; Lampson, B. W.; Landau, S.; Leiter,
M. E.; Parker, E. R.; and Weinberger, P. J., 2015. Bulk collection of signal intel-
ligence: technical options. In Committee on Responding to Section 5(d) of Presidential
Policy Directive 28: The Feasibility of Software to Provide Alternatives to Bulk Signals
Intelligence Collection. National Academy Press. (cited on page 138)

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; and Salakhutdinov,
R., Dropout: a simple way to prevent neural networks from overfitting. JMLR, 15,
1 (2014), 1929–1958. (cited on page 120)

Stempfel, G. and Ralaivola, L., 2009. Learning SVMs from sloppily labeled data.
In ICANN, 884–893. Springer. (cited on page 17)

Stolpe, M. and Morik, K., Learning from label proportions by optimizing cluster
model selection. In ECML-PKDD, 2011. (cited on pages 51 and 102)

Sukhbaatar, S.; Bruna, J.; Paluri, M.; Bourdev, L.; and Fergus, R., Training con-
volutional networks with noisy labels. In ICLR Workshops, 2015. (cited on pages
119, 120, 122, 130, and 135)

Surdeanu, M.; Tibshirani, J.; Nallapati, R.; and Manning, C. D., Multi-instance
multi-label learning for relation extraction. In EMNLP-CoNLL, 2012. (cited on
page 15)

Sutskever, I.; Jozefowicz, R.; Gregor, K.; Rezende, D.; Lillicrap, T.; and Vinyals,
O., Towards principled unsupervised learning. arXiv preprint arXiv:1511.06440,
(2015). (cited on page 167)

Sutton, R. S. and Barto, A. G., 1998. Reinforcement learning: An introduction, vol. 1.
MIT press Cambridge. (cited on page 18)

Sweeney, L., Privacy-enhanced linking. ACM SIGKDD Explorations Newsletter, 7, 2
(2005), 72–75. (cited on page 138)

Szummer, M. and Jaakkola, T. S., Information regularization with partially labeled
data. In NIPS, 2002. (cited on page 17)



BIBLIOGRAPHY 181

Tsui, F.; Espino, J. U.; Dato, V. M.; Gesteland, P. H.; Hutman, J.; and Wagner,
M. M., Technical description of rods: a real-time public health surveillance system.
Journal of the American Medical Informatics Association, 10, 5 (2003), 399–408. (cited
on page 138)

van Rooyen, B., 2015. Machine Learning via Transitions. Ph.D. thesis, The Australian
National University. (cited on pages 118 and 122)

van Rooyen, B.; Menon, A. K.; and Williamson, R. C., Learning with symmetric
label noise: The importance of being unhinged. In NIPS, 2015. (cited on pages 17,
26, 28, 106, 108, 110, 118, and 128)

Vapnik, V., 1998. Statistical Learning Theory. John Wiley. (cited on pages 12, 23,
and 166)

Vatsalan, D.; Christen, P.; and Verykios, V. S., A taxonomy of privacy-preserving
record linkage techniques. Information Systems, 38, 6 (2013), 946–969. (cited on
page 152)

Villani, C., 2008. Optimal transport: old and new, vol. 338. Springer Science & Business
Media. (cited on page 104)

Von Luxburg, U., A tutorial on spectral clustering. Statistics and computing, 17, 4
(2007), 395–416. (cited on page 56)

Wager, S.; Blocker, A.; and Cardin, N., Weakly supervised clustering: Learning
fine-grained signals from coarse labels. The Annals of Applied Statistics, 9, 2 (2015),
801–820. (cited on pages 52 and 102)

Wakefield, J. and Shaddick, G., Health-exposure modeling and the ecological fal-
lacy. Biostatistics, 7, 3 (2006), 438–455. (cited on page 104)

Wang, B.; Chen, Z.; and Qi, Z., Linear twin svm for learning from label proportions.
In International Conference on Web Intelligence and Intelligent Agent Technology, 2015.
(cited on page 102)

Weston, J.; Ratle, R.; Mobahi, H.; and Collobert, R., 2012. Deep learning via semi-
supervised embedding. In Neural Networks: Tricks of the Trade, 639–655. Springer.
(cited on page 17)

Whang, S. E. and Garcia-Molina, H., Joint entity resolution. In ICDE, 2012. (cited
on page 151)

Whang, S.-E.; Menestrina, D.; Koutrika, G.; Theobald, M.; and Garcia-Molina,
H., Entity resolution with iterative blocking. In SIGMOD, 219–232, 2009. (cited on
pages 144 and 151)

Williamson, R., Reconceiving machine learning. Technical report, NICTA, 2009.
(cited on page 166)



182 BIBLIOGRAPHY

Xiao, T.; Xia, T.; Yang, T.; Huang, C.; and Wang, X., Learning from massive noisy
labeled data for image classification. In CVPR, 2015. (cited on pages 105, 119, 120,
126, 129, 130, 131, 134, and 135)

Yamanishi, Y.; Vert, J. P.; and Kanehisa, K., Protein network inference from multi-
ple genomic data: a supervised approach. Bioinformatics, 20, suppl 1 (2004), i363–
i370. (cited on page 138)

Yang, Z.; Cohen, W.; and Salakhutdinov, R., Revisiting semi-supervised learning
with graph embeddings. In ICML, 2016. (cited on page 17)

Yarin, G. and Ghahramani, Z., A theoretically grounded application of dropout in
recurrent neural networks. In NIPS, 2016. (cited on page 127)

Yu, F. X.; Cao, L.; Merler, M.; Codella, N.; Chen, T.; Smith, J. R.; and Chang, S.-F.,
Modeling attributes from category-attribute proportions. In International Conference
on Multimedia, 2014a. (cited on page 52)

Yu, F. X.; Kumar, S.; Jebara, T.; and Chang, S. F., On learning with label proportions.
CoRR, abs/1402.5902 (2014). (cited on pages 51, 61, 65, 103, and 167)

Yu, F. X.; Liu, D.; Kumar, S.; Jebara, T.; and Chang, S. F., ∝SVM for Learning with
Label Proportions. In ICML, 2013. (cited on pages viii, 18, 61, 63, 64, 65, 90, 91,
and 102)

Zantedeschi, V.; Emonet, R.; and Sebban, M., beta-risk: a new surrogate risk for
learning from weakly labeled data. In NIPS, 2016. (cited on pages 18 and 49)

Zhang, B.; Estrada, T.; Cicotti, P.; Balaji, P.; and Taufer, M., Accurate scoring
of drug conformations at the extreme scale. In International Symposium on Cluster,
Cloud and Grid Computing, 2015. (cited on page 138)

Zhou, Z.-H. and Xu, J.-M., On the relation between multi-instance learning and
semi-supervised learning. In ICML, 2007. (cited on page 16)

Zhu, X. and Ghahramani, Z., Learning from labeled and unlabeled data with label
propagation. Technical report, CMU-CALD-02-107, 2002. (cited on page 17)


	Abstract
	Contents
	Introduction
	Thesis summary
	Organization and originality
	First-author publications included in the Thesis
	Contributed publications

	Background
	Preliminary notation
	The supervised learning problem
	Learning Theory
	Generalization bounds and Rademacher complexity
	Calibrated losses

	Maximum likelihood, exponential family and sufficient statistics
	Sufficient statistics

	Weakly supervised learning
	Empirical risk minimization under weak supervision

	Appendix: proofs
	Proof of Theorem [theorem][5][]5
	Proof of Theorem [theorem][7][]7


	Weakly supervised learning and loss factorization
	Linear-odd losses and Loss Factorization
	The extent of linear-odd losses

	Generalization bounds
	A two-step procedure for weakly supervised algorithms
	Discussion
	Appendix: proofs
	Proof of Corollary [theorem][20][]20
	Proof of Lemma [theorem][21][]21
	Proof of Lemma [theorem][22][]22
	Proof of Theorem [theorem][23][]23
	Proof of Lemma [theorem][24][]24
	Proof of Theorem [theorem][26][]26

	Appendix: additional formal results
	Mean and covariance operators
	The generality of factorization
	Factorization of non linear-odd losses
	More graphs on linear and non-linear-odd losses
	The linear-odd losses of pnsCF

	References
	The two-step procedure of rfdlEF
	Learning reductions


	Learning from label proportions
	Motivation
	Learning setting
	Symmetric proper losses

	Estimating the sufficient statistic
	Mean Map algorithm of qsclEL
	Laplacian Mean Map
	Estimation: formal guarantees
	Alternating Mean Map
	Generalization bounds
	Experiments
	Algorithms
	Simulated domains
	UCI domains

	Discussion
	Appendix: proofs
	Proof of Lemma [theorem][35][]35
	Proof of Theorem [theorem][36][]36
	Proof of Lemma [theorem][37][]37
	Proof of Lemma [theorem][38][]38
	Proof of lemma [theorem][39][]39
	Proof of Theorem [theorem][41][]41
	Proof of Lemma [theorem][42][]42
	Proof of Theorem [theorem][43][]43
	Proof of Theorem [theorem][46][]46
	Proof of Equation [equation][33][4]4.33
	Proof of Equation [equation][34][4]4.34


	Appendix: additional experimental results
	Simulated domain for violation of homogeneity assumption
	Additional tests on alter-SVM ylkjcAS
	Scalability
	Full results on small domains

	References
	Ecological inference


	Learning with noisy labels I: theory for linear models
	Motivation
	Learning setting
	Estimating the sufficient statistic and SGD
	Generalization bounds
	Experiments
	Discussion
	Appendix: proofs
	Proof of Theorem [theorem][52][]52
	Proof of Theorem [theorem][53][]53
	Proof of Theorem [theorem][56][]56
	Proof of Corollaries [theorem][57][]57 and [theorem][58][]58

	References

	Learning with noisy labels II: deep neural networks, multi-class, noise estimation
	Motivation
	Learning setting
	Loss correction procedures
	The backward correction
	The forward correction
	Estimating the noise rates

	Noise free Hessians via ReLU
	Experiments
	Loss corrections with T known or estimated
	Comparing with other loss functions
	Experiments on Clothing1M

	Discussion
	Appendix: proofs
	Proof of Theorem [theorem][60][]60
	Proof of Theorem [theorem][62][]62
	Proof of Theorem [theorem][63][]63
	Proof of Theorem [theorem][64][]64

	References

	Learning from vertically distributed data without entity matching
	Motivation
	Entity resolution

	Learning setting
	Rademacher observations
	Building and learning from block rados
	Computation and optimality of block rados
	Learning from all block rados
	A more realistic setting

	Experiments
	Domain generation
	Metric
	Results

	Discussion and references
	Appendix: proofs
	Proof of Theorem [theorem][68][]68
	Proof of Lemma [theorem][69][]69
	Proof of Theorem [theorem][72][]72 
	Proof of Theorem [theorem][73][]73

	Appendix: extension to the more general setting
	Appendix: additional experimental results

	Conclusion

